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ABSTRACT
The Control as Inference (CAI) framework has successfully trans-

formed single-agent reinforcement learning (RL) by reframing con-

trol tasks as probabilistic inference problems. However, the ex-

tension of CAI to multi-agent, general-sum stochastic games (SGs)

remains underexplored, particularly in decentralized settings where

agents operate independently without centralized coordination. In

this paper, we propose a novel variational inference framework

tailored to decentralized multi-agent systems. Our framework ad-

dresses the challenges posed by non-stationarity and unaligned

agent objectives, proving that the resulting policies form an 𝜖-Nash

equilibrium. Additionally, we demonstrate theoretical convergence

guarantees for the proposed decentralized algorithms. Leverag-

ing this framework, we instantiate multiple algorithms to solve

for Nash equilibrium, mean-field Nash equilibrium, and correlated

equilibrium, with rigorous theoretical convergence analysis.

CCS CONCEPTS
• Computing methodologies→Multi-agent planning.

KEYWORDS
Variational Inference, Stochastic Games, Nash Equilibrium, Mean

Field Game, Correlated Equilibrium

1 INTRODUCTION
Casting a control problem as an inference problem has a long his-

tory dating back to the work solving optimal control in linear

systems [10]. There have been works framing the problem of rein-

forcement learning (RL) in the language of variational inference

[1, 11, 12, 25]. Agents infer actions that maximize the likelihood

of optimal trajectories instead of maximizing the long-term return.

This reformulation enables the use of powerful variational infer-

ence tools in RL. The variational inference algorithm can handle the

uncertainties regarding the transition probabilities in the environ-

ment and provide a natural exploration strategy based on entropy

maximization, which improves the stability of the learned policy in

complex stochastic systems [6]. Although control as inference (CAI)
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has led to a series of impressive successes in single-agent tasks,

there are limited works that generalize CAI to multi-agent decision-

making problems. The multi-agent decision-making problems are

oftenmodeled under the framework of general-sum stochastic game

(SG). In an SG, each agent interacts with the environment and other

agents to maximize its own long-term return. Compared with the

single agent tasks, the decision-making problem in the SG has two

key challenges [29]. Since all the agent improves their policies to

optimize their own objectives simultaneously, the environment is

non-stationary in the view of each agent. The non-stationary prop-

erty increases the uncertainty in the environment. Furthermore,

the objectives of agents are multi-dimensional. The objectives of

different agents are not necessarily aligned. Hence agents should

consider other agents’ responses while improving their policies

according to their objectives, which requires agents to have the

ability to reason about others’ behaviors [8, 16, 27].

Although there exists work trying to address the above chal-

lenges under the framework of variational inference [21], which

limits the scope within the cooperative setting, where agents col-

laborate to optimize a common long-term return. This assump-

tion is quite restrictive as it is not suitable for the competitive or

mixed cooperative-competitive game. In addition, the equivalence

between the solution of probabilistic inference and the equilibrium

has not been rigorously studied.

In this paper, we aim to propose a unified decentralized vari-

ational inference framework to solve general-sum SG. Our main

contribution is to reformulate and solve the general-sum stochastic

game under the framework the variational inference, which bridges

the variational inference and finding the equilibrium in the general-

sum stochastic game. This approach allows for the use of more tools

to solve the general-sum stochastic game. We redefine the binary

random variable optimality to formulate the SG with variational

inference. Then we propose a unified variational inference frame-

work for solving general-sum SG. We derive different algorithms

under this framework, for solving different equilibrium concepts.

Our contributions are as follows:

• We introduce a unified, decentralized variational inference

framework for solving general-sum games. Compared with

previous work [21, 28], our framework can handle a wider

class of games, whether it is cooperative or not. This frame-

work builds the connection between inference and game

theory, allowing recent advances in statistical inference to

be applied to diverse sets of game theoretical settings.

• We rigorously prove that the policies derived from our frame-

work form an 𝜖-Nash equilibrium and provide formal con-

vergence guarantees for the decentralized algorithms, which

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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is a significant step towards understanding the relationship

between variational inference and equilibrium concepts.

• We propose a novel opponent modeling approach based on

variational inference, enabling agents to infer the strategies

of others even when their objectives are unaligned.

• We instantiate several decentralized algorithms under this

framework to solve various equilibrium concepts, including

Nash equilibrium, mean-field Nash equilibrium, and corre-

lated equilibrium.

This decentralized approach introduces significant advantages in

scalability and flexibility, making it suitable for large-scale multi-

agent systems.

2 RELATEDWORKS
Applying probabilistic inference to control has a long history [17,

18, 23–25]. Casting a control problem into a probability inference

problem enables the application of advanced inference tools to the

control, and extends the model of control [11]. However, most of the

existing works focus on the single-agent case. There are a fewworks

that try to extend the inference framework to the multi-agent set-

ting. And most of them focus on cooperative games [22, 28], which

limits the application of the framework. In our work, we establish a

novel variational inference framework for a general-sum stochastic

game. We further show that solving mean field games, zero-sum

games, and correlated equilibrium in the stochastic game are spe-

cial cases of the general framework. In addition, previous works

introduce a binary random variable named optimality to cast the

problem of finding the equilibrium in the multi-agent cooperative

game to a probability inference problem. However, the objective

of the probability inference problem is different from the objective

of finding an equilibrium. The relation between the solution of

the probability inference problem and the solution of the original

problem is not illustrated. In our work, we find that the solution

of probability inference is an 𝜖-Nash equilibrium by deriving the

performance difference between two solutions.

There are also a few works that apply entropy regularized rein-

forcement learning method to game theory [7, 26]. However, they

treat the entropy or KL divergence as a heuristic modification to

enable improved exploration and convergence. In our work, we first

formulate the problem under the variational inference framework

and derive the entropy or KL divergence naturally in theory.

In this work, we give a new definition of optimality in the general-

sum stochastic game and propose a method for solving general-

sum stochastic game under the framework of variational inference,

which incorporates the opponent modeling. We further apply the

framework to various games to show generality.

3 PRELIMINARIES
3.1 Stochastic game
We consider a SG [19, 20] with 𝑁 players. The horizon of SG is

T = {0, 1, · · · ,𝑇 }. At each time index 𝑡 ∈ T , agent 𝑖 ∈ N (N =

{1, 2, · · · , 𝑁 }) at state 𝑠𝑡 ∈ S will select an action 𝑎𝑖𝑡 from the

action space A𝑖
. All the agents take action simultaneously. Let

𝑎𝑎𝑎𝑡 = (𝑎1

𝑡 , 𝑎
2

𝑡 , · · · , 𝑎𝑁𝑡 ) ∈ A denote the joint action. Each agent will

receive a reward 𝑟 𝑖 (𝑠𝑡 ,𝑎𝑎𝑎𝑡 ) and the joint state will change to 𝑠𝑡+1

according to the transition kernel 𝑃 (𝑠𝑡+1 |𝑠𝑡 ,𝑎𝑎𝑎𝑡 ). Agents take actions
according to some policy 𝜋𝑖 : S → P(A𝑖 ). Given the joint policy

𝜋𝜋𝜋 = (𝜋1, 𝜋2, · · · , 𝜋𝑁 ), the cumulative reward of agent 𝑖 is

𝑉 𝑖 (𝑠;𝜋𝜋𝜋) =
𝑇∑︁
𝑡=0

E
[
𝑟 𝑖𝑡 (𝑠𝑡 ,𝑎𝑎𝑎𝑡 ) |𝑠0 = 𝑠, 𝜋𝜋𝜋

]
,

where the expectation is taken with respect to 𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡 ,𝑎𝑎𝑎𝑡 ),
𝑎𝑎𝑎𝑡 ∼ 𝜋𝜋𝜋 (·|𝑠𝑠𝑠𝑡 ). TheNash equilibrium is a joint policy𝜋𝜋𝜋∗ = (𝜋∗

1
, 𝜋∗

2
, · · · , 𝜋∗

𝑁
)

such that for all agent 𝑖 ,

𝑉 𝑖 (𝑠;𝜋𝜋𝜋∗) ≥ 𝑉 𝑖 (𝑠;𝜋𝑖 , 𝜋𝜋𝜋∗−𝑖 ),
where 𝜋𝜋𝜋∗−𝑖 = (𝜋∗

1
, · · · , 𝜋∗

𝑖−1
, 𝜋∗

𝑖+1
, · · · , 𝜋∗

𝑁
), i.e. 𝜋∗

𝑖
is the best re-

sponse of 𝜋𝜋𝜋∗−𝑖 . Accordingly, 𝜋
∗
𝑖

∈ Π𝑖 := Δ(A𝑖 )S , 𝜋𝜋𝜋∗ ∈ Π :=

×𝑖∈NA𝑖 and 𝜋𝜋𝜋
∗
−𝑖 ∈ Π := ×𝑖≠𝑗∈NA 𝑗 . Similarly, a joint policy 𝜋𝜋𝜋∗ is

the 𝜖-Nash equilibrium if there exists an 𝜖 > 0 so that for all agent

𝑖 ∈ N ,

𝑉 𝑖 (𝑠;𝜋𝜋𝜋∗) ≥ max

𝜋𝑖 ∈Π𝑖

𝑉 𝑖 (𝑠;𝜋𝑖 , 𝜋𝜋𝜋∗−𝑖 ) − 𝜖.

3.2 Control as inference
Control as inference [11] incorporates the reward function by in-

troducing a binary optimality variable O𝑖
𝑡 . O𝑖

𝑡 indicates "optimality"

for each agent 𝑖 at each time step 𝑡 . The action of agent 𝑖 is opti-

mal if O𝑖
𝑡 = 1. Maximizing the long-term return in the framework

of control is equivalent to maximizing the probability of O𝑖
𝑡 = 1.

Therefore, a control problem can be cast as an inference problem.

4 VARIATIONAL STOCHASTIC GAME:
THEORY

In this section, we establish a general framework of variational

inference for solving stochastic games. We introduce the definition

of optimality in the general-sum stochastic game, formalizing the

general-sum stochastic game as probabilistic inference. We further

establish the relationship between the Nash equilibrium condition

and optimality in inference.

To solve the stochastic game using variational inference method,

we first build the graphical model of stochastic game as shown

in Figure 1. We introduce the variable optimality O𝑖
𝑡 to indicate

whether the agent 𝑖 achieves optimality at time step 𝑡 in the sto-

chastic game.

Definition 4.1. Optimality O𝑖
𝑡 is a binary variable indicating "op-

timality" for each agent 𝑖 at each time step 𝑡 . If the optimality for

agent 𝑖 at time step 𝑡 is reached, the binary variable O𝑖
𝑡 = 1. And

we have 𝑃 (O𝑖
𝑡 = 1|𝑠,𝑎𝑎𝑎,𝜋𝜋𝜋−𝑖 ) ∝ exp(𝑟 𝑖 (𝑠,𝑎𝑎𝑎)).

The objective of the inference problem is to maximize the likeli-

hood 𝑃 (O𝑖
0:𝑇

= 1|𝜋𝑖 , 𝜋𝜋𝜋−𝑖 ) for all 𝑖 ∈ N .

Under the framework of variational inference, we transform the

objective of agent 𝑖 to choose a policy tomaximize the log-likelihood

of optimality.

log 𝑃 (O𝑖
0:𝑇 = 1|𝜋𝑖 , 𝜋𝜋𝜋−𝑖 ) =

log

∑︁
𝑎𝑖

0:𝑇
,𝑎−𝑖

0:𝑇
,𝑠0:𝑇

𝑃 (O𝑖
0:𝑇 = 1, 𝑎𝑖

0:𝑇 , 𝑎
−𝑖
0:𝑇 , 𝑠0:𝑇 |𝜋𝑖 , 𝜋𝜋𝜋−𝑖 ) (1)

In order to optimize the objective in the (1), we factorize 𝑃 (O𝑖
0:𝑇

=

1, 𝑎𝑖
0:𝑇

, 𝑎−𝑖
0:𝑇

, 𝑠0:𝑇 |𝜋𝑖 , 𝜋𝜋𝜋−𝑖 ) based on the Figure 1. We use an auxiliary
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Figure 1:We build the directed graphicalmodel of a stochastic
game. The arrows show the conditional dependencies among
the variables. The state 𝑠𝑡+1 and optimality O𝑖

𝑡 for each agent
are dependent on 𝑎𝑖𝑡 , 𝑎

−𝑖
𝑡 , and 𝑠𝑡 . At each time step, all the

agents take action simultaneously. As agent 𝑖 cannot observe
𝑎−𝑖𝑡 in advance, it will use 𝑎−𝑖𝑡 ∼ 𝜌 (·|𝑠𝑡 ) (the gray node) to
predict actions of other agents. And action 𝑎𝑖𝑡 is dependent
on 𝑎−𝑖𝑡 .

distribution over states and actions 𝑞(𝑎𝑖
0:𝑇

, 𝑎−𝑖
0:𝑇

, 𝑠0:𝑇 ) to handle the

unknown the transition dynamic and opponent policy.

𝑞(𝑎𝑖
0:𝑇 , 𝑎

−𝑖
0:𝑇 , 𝑠0:𝑇 )

= 𝑃 (𝑠0)
𝑇∏
𝑡=0

𝑞(𝑎𝑖𝑡 |𝑠𝑡 , 𝑎−𝑖𝑡 )𝑞(𝑎−𝑖𝑡 |𝑠𝑡 )𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑖𝑡 , 𝑎−𝑖𝑡 )

= 𝑃 (𝑠0)
𝑇∏
𝑡=0

𝜋𝑖 (𝑎𝑖𝑡 |𝑠𝑡 , 𝑎−𝑖𝑡 )𝜌 (𝑎−𝑖𝑡 |𝑠𝑡 )𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑖𝑡 , 𝑎−𝑖𝑡 )

The opponent policy 𝜋𝜋𝜋−𝑖 is approximated by agent 𝑖’s opponent

model 𝜌 (𝑎−𝑖𝑡 |𝑠𝑡 ) =
∏

𝑗∈N, 𝑗≠𝑖 𝜌 𝑗 (𝑎
𝑗
𝑡 |𝑠𝑡 ). We can derive the lower

bound of (1).

log 𝑃 (O𝑖
0:𝑇 = 1|𝜋𝑖 , 𝜋𝜋𝜋−𝑖 )

= log

∑︁
𝑎𝑎𝑎0:𝑇 ,𝑠0:𝑇

𝑃 (O𝑖
0:𝑇 = 1,𝑎𝑎𝑎0:𝑇 , 𝑠0:𝑇 |𝜋𝑖 , 𝜋𝜋𝜋−𝑖 )

= log

∑︁
𝑎𝑎𝑎0:𝑇 ,𝑠0:𝑇

𝑞(𝑎𝑎𝑎0:𝑇 , 𝑠0:𝑇 )
𝑃 (O𝑖

0:𝑇
= 1,𝑎𝑎𝑎0:𝑇 , 𝑠0:𝑇 |𝜋𝑖 , 𝜋𝜋𝜋−𝑖 )
𝑞(𝑎𝑎𝑎0:𝑇 , 𝑠0:𝑇 )

≥
∑︁

𝑎𝑎𝑎0:𝑇 ,𝑠0:𝑇

𝑞(𝑎𝑎𝑎0:𝑇 , 𝑠0:𝑇 ) log

𝑃 (𝑜𝑖
0:𝑇

= 1,𝑎𝑎𝑎0:𝑇 , 𝑠0:𝑇 |𝜋𝑖 , 𝜋𝜋𝜋−𝑖 )
𝑞(𝑎𝑎𝑎0:𝑇 , 𝑠0:𝑇 )

=

𝑇∑︁
𝑡=0

E[𝑟 𝑖𝑡 (𝑠𝑡 ,𝑎𝑎𝑎𝑡 ) + 𝐻 (𝜋𝑖 (𝑎𝑖𝑡 |𝑠𝑡 , 𝑎−𝑖𝑡 ))

− KL(𝜌 (𝑎−𝑖𝑡 |𝑠𝑡 ) | |𝜋𝜋𝜋−𝑖 (𝑎−𝑖𝑡 |𝑠𝑡 )) |𝜋𝑖 , 𝜋𝜋𝜋−𝑖 ],

(2)

where the expectation is taken with respect to 𝑎𝑖𝑡 ∼ 𝜋𝑖 (·|𝑠𝑡 , 𝑎−𝑖𝑡 ),
𝑎−𝑖𝑡 ∼ 𝜌 (·|𝑠𝑡 ), 𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡 , 𝑎𝑖𝑡 , 𝑎−𝑖𝑡 ) and we use the fact that 𝑃 (O𝑖

𝑡 =

1|𝑠,𝑎𝑎𝑎,𝜋𝜋𝜋−𝑖 ) ∝ exp(𝑟 𝑖 (𝑠,𝑎𝑎𝑎)).

Denote the lower bound as

𝐽 (𝜋𝑖 , 𝑠0;𝜋𝜋𝜋−𝑖 ) :=

𝑇∑︁
𝑡=0

E[𝑟 𝑖𝑡 (𝑠𝑡 ,𝑎𝑎𝑎𝑡 ) + 𝐻 (𝜋𝑖 (𝑎𝑖𝑡 |𝑠𝑡 , 𝑎−𝑖𝑡 ))

− KL(𝜌 (𝑎−𝑖𝑡 |𝑠𝑡 ) | |𝜋𝜋𝜋−𝑖 (𝑎−𝑖𝑡 |𝑠𝑡 ))],
(3)

where the expectation is taken with respect to 𝑎𝑖𝑡 ∼ 𝜋𝑖 (·|𝑠𝑡 , 𝑎−𝑖𝑡 ),
𝑎−𝑖𝑡 ∼ 𝜌 (·|𝑠𝑡 ), 𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡 , 𝑎𝑖𝑡 , 𝑎−𝑖𝑡 ). It is known as the evidence

lower bound (ELBO) in the context of variational inference [3]. We

maximize the ELBO to approximate the best response policy.

We denote the solution to this problem as the joint policy 𝜋𝜋𝜋∗.
And 𝜋𝜋𝜋∗ satisfies 𝑃 (O𝑖

0:𝑇
= 1|𝜋∗

𝑖
, 𝜋𝜋𝜋∗−𝑖 ) ≥ 𝑃 (O𝑖

0:𝑇
= 1|𝜋𝑖 , 𝜋𝜋𝜋∗−𝑖 ) for

all 𝑖 ∈ N . Then we show the relation between 𝜋𝜋𝜋∗ and the Nash

equilibrium in the following theorem.

Theorem 4.2. 𝜋𝜋𝜋∗ is a 𝑇 log max𝑖 |𝐴𝑖 |−Nash equilibrium.

Proof. Denote

𝐽 (𝜋𝑖 , 𝑠0;𝜋𝜋𝜋−𝑖 ) = E𝜋𝑖

[
𝑇∑︁
𝑡=0

𝑟 𝑖 (𝑠𝑡 , 𝑎𝑖𝑡 , 𝑎−𝑖𝑡 )
]
,

where the expectation is taken with respect to 𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡 , 𝑎𝑖𝑡 , 𝑎−𝑖𝑡 ),
𝑎𝑖𝑡 ∼ 𝜋𝑖 (·|𝑠𝑡 , 𝑎−𝑖𝑡 ),𝑎−𝑖𝑡 ∼ 𝜌 (·|𝑠𝑡 ). Assume that �̃�𝑖 = arg max𝜋𝑖

𝐽 (𝜋𝑖 , 𝑠0;𝜋𝜋𝜋∗−𝑖 )
for all 𝑖 ∈ N . Then we prove the conclusion by proving the inequal-

ity.

𝐽 (𝜋∗𝑖 , 𝑠0;𝜋𝜋𝜋−𝑖 ) ≤ 𝐽 (�̃�𝑖 , 𝑠0;𝜋𝜋𝜋−𝑖 ) ≤ 𝐽 (𝜋∗𝑖 , 𝑠0;𝜋𝜋𝜋−𝑖 )
≤ 𝐽 (𝜋∗𝑖 , 𝑠0;𝜋𝜋𝜋−𝑖 ) +𝑇 log max

𝑖∈N
|𝐴𝑖 |

The first inequality is from the definition of the best response.

The second inequality is from the non-negativity of entropy.

𝐽 (�̃�𝑖 , 𝑠0;𝜋𝜋𝜋−𝑖 )

≤𝐽 (�̃�𝑖 , 𝑠0;𝜋𝜋𝜋−𝑖 ) + E
[ 𝑇∑︁
𝑡=0

𝐻 (�̃�𝑖 (𝑎𝑖𝑡 |𝑠𝑡 , 𝑎−𝑖𝑡 ))
]

≤𝐽 (𝜋∗𝑖 , 𝑠0;𝜋𝜋𝜋−𝑖 )

The third inequality is from themaximumof entropy:𝐻 (𝜋𝑖 (𝑎𝑖𝑡 |𝑠𝑡 , 𝑎−𝑖𝑡 )) ≤
log |A𝑖 |. Therefore, 𝜋𝜋𝜋∗ is an 𝑇 log max𝑖 |𝐴𝑖 |-Nash equilibrium. □

Theorem 4.2 plays an important role in the framework. It points

out that the joint policy derived by the variational inference could

approximate Nash equilibrium.

So far the theoretical results are established in the finite-horizon

setting, but these results could be generalized to the infinite-horizon

setting. In order to ensure the algorithm applicable to the infinite-

horizon setting and convergent backup, we modify the transition

kernel 𝑝 (𝑠𝑡+1 |𝑠𝑡 ,𝑎𝑎𝑎𝑡 ) = 𝛾𝑝 (𝑠𝑡+1 |𝑠𝑡 ,𝑎𝑎𝑎𝑡 ), and add an absorbing state 𝑠

such that 𝑝 (𝑠 |𝑠,𝑎𝑎𝑎) = 1 − 𝛾 for all 𝑠 ∈ S and 𝑎𝑎𝑎 ∈ A [11].

5 VARIATIONAL STOCHASTIC GAME:
REALIZATION

In this section, we propose a series of methods for different equilib-

rium concepts based on the framework provided in Section 4. Since

there are only a few differences among these methods, we will give

a detailed introduction for inference for Nash equilibrium and only
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introduce the modifications of other methods. The overview of the

differences among these methods is provided in Table 1.

5.1 Inference for Nash equilibrium
Based on the framework, we propose a decentralized algorithm

named variational policy gradient (VPG) to solve the stochastic

game. We analyze the performance difference of policy resulted

from the inaccurate opponent modeling, and give a uniform bound

applicable to all opponent model methods.

5.1.1 Variational policy gradient. We first define the action-value

function and value function.

Definition 5.1. Given a joint policy 𝜋𝜋𝜋 , the action-value function

is defined as follows.

𝑄𝑖 (𝑠𝑡 , 𝑎𝑖𝑡 , 𝑎−𝑖𝑡 ;𝜋𝜋𝜋) = 𝑟 𝑖𝑡 (𝑠𝑡 ,𝑎𝑎𝑎𝑡 ) + log𝜋𝜋𝜋−𝑖 (𝑎−𝑖𝑡 |𝑠𝑡 )

+ E
[ 𝑇∑︁
𝑘=𝑡+1

𝛾𝑘−𝑡 (𝑟 𝑖
𝑘
(𝑠𝑘 ,𝑎𝑎𝑎𝑘 ) + 𝐻 (𝜋𝑖 (𝑎𝑖𝑘 |𝑠𝑘 , 𝑎

−𝑖
𝑘
))

− KL(𝜌 (𝑎−𝑖
𝑘
|𝑠𝑘 ) | |𝜋𝜋𝜋−𝑖 (𝑎−𝑖𝑘 |𝑠𝑘 )))

]
where the expectation is taken with respect to 𝑎𝑖

𝑘
∼ 𝜋𝑖 (·|𝑠𝑘 , 𝑎−𝑖𝑘 ),

𝑎−𝑖
𝑘

∼ 𝜌 (·|𝑠𝑘 ), 𝑠𝑘+1
∼ 𝑃 (·|𝑠𝑘 , 𝑎𝑖𝑘 , 𝑎

−𝑖
𝑘
). And the value function is

𝑉 𝑖 (𝑠;𝜋𝜋𝜋) = E[𝑄𝑖 (𝑠, 𝑎𝑖 , 𝑎−𝑖 ;𝜋𝜋𝜋) − log𝜋𝑖 (𝑎𝑖 |𝑠, 𝑎−𝑖 )𝜌 (𝑎−𝑖𝑡 |𝑠𝑡 )],

where the expectation is taken with respect to 𝑎𝑖 ∼ 𝜋𝑖 (·|𝑠, 𝑎−𝑖 ),
𝑎−𝑖 ∼ 𝜌 (·|𝑠).

Note that the definition of the action-value function requires that

we approximate the policy of opponents 𝜋𝜋𝜋−𝑖 (𝑎−𝑖𝑡 |𝑠𝑡 ) with agent 𝑖’s

opponent model 𝜌 (𝑎−𝑖𝑡 |𝑠𝑡 ). Here we don’t specify the method to

update 𝜌 (𝑎−𝑖𝑡 |𝑠𝑡 ). The following analysis applies to any opponent

model method.

Using the variational inference, we maximize the ELBO to get

the best response of agent 𝑖 .

𝐽 (𝜋𝑖 , 𝑠0;𝜋𝜋𝜋−𝑖 ) = E𝑠0∼𝑃 (𝑠0 )
[
𝑉 𝑖 (𝑠0;𝜋𝜋𝜋)

]
=E𝑠0∼𝑃 (𝑠0 )

[
E[𝑄𝑖 (𝑠0, 𝑎

𝑖 , 𝑎−𝑖 ;𝜋𝜋𝜋) − log𝜋𝑖 (𝑎𝑖 |𝑠0, 𝑎
−𝑖 )]

− log 𝜌 (𝑎−𝑖 |𝑠0)
]

=E𝑠0∼𝑃 (𝑠0 )

[
𝑍 + 𝐻 (𝜌 (·|𝑠0))

− E
[
KL

(
𝜋𝑖 (𝑎𝑖 |𝑠0, 𝑎

−𝑖 )
exp(𝑄𝑖 (𝑠0, 𝑎

𝑖 , 𝑎−𝑖 ;𝜋𝜋𝜋))
𝑍

)] ]
,

where 𝑍 =
∑
𝑎𝑖 ∈𝐴𝑖

exp(𝑄𝑖 (𝑠0, 𝑎
𝑖 , 𝑎−𝑖 ;𝜋𝜋𝜋)). Since the KL divergence

is non-negative, we have the following proposition.

Proposition 5.2. The best response policy is in the form of

𝜋∗𝑖 (𝑎
𝑖 |𝑠, 𝑎−𝑖 ) = exp(𝑄𝑖 (𝑠, 𝑎𝑖 , 𝑎−𝑖 ;𝜋𝜋𝜋))∑

𝑎𝑖 ∈𝐴𝑖
exp(𝑄𝑖 (𝑠, 𝑎𝑖 , 𝑎−𝑖 ;𝜋𝜋𝜋))

Proposition 5.2 shows that the best response policy is in the form

of 𝜋𝜃
𝑖
(𝑎 |𝑠, 𝑎−𝑖 ) = softmax(𝜃𝑖,𝑠,𝑎,𝑎−𝑖 ), i.e. the best response policy

is softmax policy parameterized [2]. We use the natural policy

gradient (NPG) method [9] to derive the best response policy.

Proposition 5.3. Denote𝜃 (𝑡 ) the 𝑡-th iterate and𝜋 (𝑡 ) = softmax(𝜃𝑠,𝑎𝑎𝑎).
For each agent 𝑖 , state 𝑠 , and action 𝑎, the NPG update rule can be
written as

𝜋
(𝑡+1)
𝑖

(𝑎 | 𝑠, 𝑎−𝑖 ) = 1

𝑍 (𝑡 ) (𝑠)

(
𝜋𝑖,(𝑡 ) (𝑎 | 𝑠, 𝑎−𝑖 )

)
1− 𝜂

1−𝛾

exp

(
𝜂𝑄𝑖,(𝑡 ) (𝑠, 𝑎, 𝑎−𝑖 ;𝜋𝜋𝜋 (𝑡 ) )

1 − 𝛾

)
.

(4)

where 𝜂 is the learning rate.

Proof. We first define the discounted state visitation distribu-

tion 𝑑𝜋𝜋𝜋 (𝑠) = (1−𝛾)∑∞
𝑡=0

𝛾𝑡𝑃 (𝑠𝑡 = 𝑠). Denote 𝜃 (𝑡 )
𝑖

is the parameter

vector of policy 𝜋
(𝑡 )
𝑖

. And the element of 𝜃 (𝑡 ) is the approxima-

tion of action-value function, i.e. 𝜃
(𝑡 )
𝑖,𝑠,𝑎,𝑎−𝑖 = 𝑄𝑖 (𝑠, 𝑎, 𝑎−𝑖 ;𝜋𝜋𝜋 (𝑡 ) ). The

update rule of 𝜃 is

𝜃
(𝑡+1)
𝑖,𝑠,𝑎,𝑎−𝑖 =𝜃

(𝑡 )
𝑖,𝑠,𝑎,𝑎−𝑖 + 𝜂

[
F (𝜃 (𝑡 )

𝑖
)†𝑉 𝑖 (𝑠;𝜋𝜋𝜋 (𝑡 ) )

]
=𝜃

(𝑡 )
𝑖,𝑠,𝑎,𝑎−𝑖 +

𝜂

1 − 𝛾

(
𝑄𝑖 (𝑠, 𝑎, 𝑎−𝑖 ;𝜋𝜋𝜋 (𝑡 ) )

− log𝜋 (𝑎 |𝑠, 𝑎−𝑖 )𝜌 (𝑎−𝑖 |𝑠) −𝑉 𝑖 (𝑠;𝜋𝜋𝜋 (𝑡 ) )
)
,

where F (𝜃 (𝑡 )
𝑖

)† is the pseudo-inverse of the Fischer information

matrix

F (𝜃 (𝑡 )
𝑖

) =E
𝑠∼𝑑𝜋𝜋𝜋 (𝑡 ) ( ·),𝑎−𝑖∼𝜌 ( · |𝑠 ),𝑎𝑖∼𝜋 (𝑡 )

𝑖
( · |𝑎−𝑖 ,𝑠 )∼

[
∇
𝜃
(𝑡 )
𝑖

log𝜋
(𝑡 )
𝑖

(𝑎𝑖 |𝑠, 𝑎−𝑖 ) log𝜋
(𝑡 )
𝑖

(𝑎𝑖 |𝑠, 𝑎−𝑖 )𝑇
]
.

Hence the update rule of policy is

𝜋
(𝑡+1)
𝑖

(𝑎 |𝑠, 𝑎−𝑖 ) ∝ exp(𝜃 (𝑡+1)
𝑖,𝑠,𝑎,𝑎−𝑖 )

= exp

(
𝜃
(𝑡 )
𝑖,𝑠,𝑎,𝑎−𝑖 +

𝜂

1 − 𝛾

(
𝑄𝑖 (𝑠, 𝑎, 𝑎−𝑖 ;𝜋𝜋𝜋 (𝑡 ) )

− log𝜋 (𝑎 |𝑠, 𝑎−𝑖 )𝜌 (𝑎−𝑖 |𝑠) −𝑉 𝑖 (𝑠;𝜋𝜋𝜋 (𝑡 ) )
))

∝
(
𝜋
(𝑡 )
𝑖

(𝑎 |𝑠, 𝑎−𝑖 )
)

1− 𝜂

1−𝛾
exp

(
𝜂

1 − 𝛾
𝑄𝑖

(
𝑠, 𝑎, 𝑎−𝑖 ;𝜋𝜋𝜋 (𝑡 )

) )
.

□

Thenwe propose the variational policy gradient (VPG) algorithm.

The pseudo-code of VPG is listed in the Algorithm 1.

Then we will prove that VPG converges to Nash equilibrium in

the Markov potential game.

Definition 5.4. Markov Potential Game (MPG) is a Markov de-

cision process that there exists a function Φ(𝑠;𝜋𝑖 , 𝜋𝜋𝜋−𝑖 ) : Π → R,
with 𝑠 ∈ S, so that

�̃� 𝑖 (𝑠;𝜋𝑖 , 𝜋𝜋𝜋−𝑖 ) − �̃� 𝑖 (
𝑠;𝜋 ′𝑖 , 𝜋𝜋𝜋−𝑖

)
= Φ (𝑠;𝜋𝑖 , 𝜋𝜋𝜋−𝑖 ) − Φ

(
𝑠;𝜋 ′𝑖 , 𝜋𝜋𝜋−𝑖

)
,

for all agents 𝑖 ∈ N , states 𝑠 ∈ S and policies 𝜋𝑖 , 𝜋
′
𝑖
∈ Π𝑖 , 𝜋𝜋𝜋−𝑖 ∈

Π−𝑖 . Here �̃� 𝑖 (𝑠;𝜋𝑖 , 𝜋𝜋𝜋−𝑖 ) is value function with accurate opponent

modeling.
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Table 1: The modification of framework to different games.

Opponent Model Policy

Nash equilibrium in general-sum stochastic game 𝜌 (𝑎−𝑖 |𝑠) 𝜋 (𝑎𝑖 |𝑠, 𝑎−𝑖 )
Nash equilibrium in mean field game L(𝑠, 𝑎) 𝜋 (𝑎 |𝑠,L)
Correlated equilibrium in general-sum stochastic game 𝜌 (𝑎−𝑖 |𝑠) 𝜋 (𝑎𝑖𝑡 |𝑠𝑡 , 𝑎−𝑖𝑡 ) = ∑

𝜔𝑡 ∈Ω 𝜋 (𝑎𝑖𝑡 |𝑠𝑡 , 𝑎−𝑖𝑡 , 𝜔𝑡 )𝜎 (𝜔𝑡 )
Nash equilibrium in zero sum stochastic game None 𝜋 (𝑎𝑖 |𝑠, 𝑎−𝑖 )

Algorithm 1 Variational Policy Gradient (VPG)

Require: Learning rate 𝜂

Initialise opponent model 𝜌 .

Initialise policy 𝜋𝑖,(0) for all agent 𝑖 ∈ N .

Initialise the replay buffer𝑀 .

for 𝑘 = 1, 2, . . . do
for Each agent 𝑖 ∈ N do
For the current state 𝑠𝑡 , 𝑎𝑖𝑡 ∼ 𝜋𝑖 (·|𝑠𝑡 ) =∑
𝑎𝑎𝑎−𝑖
𝑡
𝜌 (𝑎𝑎𝑎−𝑖𝑡 |𝑠𝑡 )𝜋𝑖 (·|𝑠𝑡 , 𝑎𝑖𝑡 ,𝑎𝑎𝑎−𝑖𝑡 ).

Observe next state 𝑠𝑡+1, opponent action 𝑎−𝑖𝑡 and reward 𝑟 𝑖𝑡
and save the experience in the reply buffer.

Update opponent model.

end for
for Each agent 𝑖 ∈ N do

Compute the best response policy using Equation (4).

end for
end for

The first step is to prove that the estimation error of the opponent

is bounded. Modeling the opponent will result in an estimation error

of the action-value function. The following proposition gives the

upper bound of estimation error.

Proposition 5.5. Suppose that KL(𝜌 (·|𝑠) | |𝜋𝜋𝜋−𝑖 (·|𝑠)) < 𝜖𝜌 for all
𝑠 ∈ S. Without loss of generality, the reward function |𝑟 𝑖 (𝑠,𝑎𝑎𝑎) | ≤ 1,
∀𝑠 ∈ S, 𝑎𝑎𝑎 ∈ A, 𝑖 ∈ N . Denote the action-value function de-
rived using the opponent model as �̂�𝑖 (𝑠,𝑎𝑎𝑎;𝜋𝜋𝜋). Then we have that
max𝑠∈S,𝑎𝑎𝑎∈A,𝑖∈N |𝑄𝑖 (𝑠,𝑎𝑎𝑎;𝜋𝜋𝜋) − �̂�𝑖 (𝑠,𝑎𝑎𝑎;𝜋𝜋𝜋) | ≤ 𝛿 where

𝛿 :=
2(1 + log |A𝑖 |)

(1 − 𝛾)2

√︂
1

2

𝜖𝜌 +
𝜖𝜌

1 − 𝛾

.

The proof is deferred to Appendix A.1.

The second step is to derive the convergence of VPG with exact

opponent modeling. We first show the equivalence between VPG

and the global NPG on the potential function. Then we will prove

the convergence of VPG using the smoothness of the potential

function.

Note that the gradient of the value functions equals the potential

function and agents update their policy independently. Hence VPG

is equivalent to running Natural Policy Gradient (NPG) on the

potential function, which is shown in the following proposition.

Proposition 5.6. Consider the global NPG dynamic on the potential
function: 𝜃 (𝑡+1)

𝑠 = 𝜃
(𝑡 )
𝑠 + 𝜂F † (𝜃 (𝑡 )𝑠 )∇𝜃𝑠Φ ∀𝑠 ∈ S, where F † (𝜃𝑠 ) =

E[∇𝜃𝑠 log𝜋𝜋𝜋𝜃𝑠 (𝑎𝑎𝑎 |𝑠)∇𝜃𝑠 log𝜋𝜋𝜋𝜃𝑠 (𝑎𝑎𝑎 |𝑠)𝑇 ]† is the pseudo-inverse of the

Fischer informationmatrix.𝜋𝜋𝜋𝜃𝑠 (𝑎𝑎𝑎 |𝑠) = ∏
𝑖∈N E𝑎−𝑖∼𝜌 ( · |𝑠 ) [𝜋𝑖 (𝑎𝑖 |𝑠, 𝑎−𝑖 )].

VPG has the same dynamics as global NPG.

The proof is deferred to Appendix A.2. After showing the con-

nection of VPG and the NPG on the potential function, we next

show the smoothness of the potential function in the following

lemma.

Lemma 5.7. The potential function Φ is 𝐿-smooth with the constant

𝐿 =
2(𝑛+1)2

(1−𝛾 )3
+ 2(𝑛2 + 𝑛 + 1) 1+log max𝑖∈N |𝐴𝑖 |

(1−𝛾 )2
+ 3𝑛+2

1−𝛾 .

The proof is deferred to Appendix A.3. Using Lemma 5.7, the

potential function Φ(𝑠 ;𝜋𝜋𝜋 (𝑡 ) ) is non-decreasing if the learning rate

is
1

𝐿
[4]. We finally give the convergence of VPG.

Theorem 5.8. VPG converges to a fixed point, which is 𝜖-Nash
equilibrium of MPG, where 𝜖 = 𝛿 + log |𝐴 |

1−𝛾 .

Theorem 5.8 ensures the applicability of VPG for solving MPG.

VPG does not involve a certain opponent modeling method.

The next question is how to model the opponent using variational

inference.

5.1.2 Opponent modeling. Since the agent has no knowledge about
the optimality probabilities of other agents, we derive a variational

inference method to model opponents. To model the behavior of

agent 𝑗 , we factorize the auxiliary distribution over states and

actions 𝑞(𝑎 𝑗
0:∞, 𝑎

− 𝑗

0:∞, 𝑠0:∞) in a following way.

𝑞(𝑎 𝑗
0:∞, 𝑎

− 𝑗

0:∞, 𝑠0:∞)

= 𝑃 (𝑠0)
∞∏
𝑡=0

𝑞(𝑎 𝑗𝑡 |𝑠𝑡 )𝑞(𝑎
− 𝑗
𝑡 |𝑠𝑡 )𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎 𝑗𝑡 , 𝑎

− 𝑗
𝑡 )

= 𝑃 (𝑠0)
∞∏
𝑡=0

𝜌 𝑗 (𝑎 𝑗𝑡 |𝑠𝑡 )𝜌− 𝑗 (𝑎− 𝑗
𝑡 |𝑠𝑡 )𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎 𝑗𝑡 , 𝑎

− 𝑗
𝑡 )

Denote 𝑄
𝑗
𝜌 (𝑠𝑡 ,𝑎𝑎𝑎𝑡 ; 𝜌) as the soft action-value function of agent 𝑗 .

𝑄
𝑗
𝜌 (𝑠𝑡 ,𝑎𝑎𝑎𝑡 ; 𝜌) = 𝑟 𝑗 (𝑠𝑡 ,𝑎𝑎𝑎𝑡 ) − KL(𝜌− 𝑗 (𝑎− 𝑗

𝑡 |𝑠𝑡 ) | |𝜋𝜋𝜋− 𝑗 (𝑎− 𝑗
𝑡 |𝑠𝑡 )

+E[
∞∑︁

𝑖=𝑡+1

𝛾𝑖−𝑡 (𝑟 𝑗
𝑖
(𝑠𝑖 ,𝑎𝑎𝑎𝑖 ) − KL(𝜌 𝑗 (𝑎 𝑗𝑖 |𝑠𝑖 ) | |𝜋 𝑗 (𝑎

𝑗
𝑖
|𝑠𝑖 )))],

where the expectation is taken with respect to 𝑎𝑎𝑎𝑖 ∼ 𝑞(·|𝑠𝑖 )), 𝑠𝑖 ∼
𝑃 (·|𝑠𝑖−1,𝑎𝑎𝑎𝑖−1). Then we can derive the optimal opponent model for

agent 𝑗 .

Proposition 5.9. The optimal opponent model for agent 𝑗 is

𝜌∗𝑗 (𝑎
𝑗 |𝑠) =

𝜋 𝑗 (𝑎 𝑗 |𝑠) exp(E𝑎− 𝑗∼𝜌− 𝑗
[𝑄 𝑗

𝜌 (𝑠,𝑎𝑎𝑎; 𝜌)])

E𝑎 𝑗∼𝜋 𝑗 ( · |𝑠 )
[
exp(E𝑎− 𝑗∼𝜌− 𝑗

[𝑄 𝑗
𝜌 (𝑠,𝑎𝑎𝑎; 𝜌)])

] (5)

where 𝜋 𝑗 (𝑎 𝑗 |𝑠) is the prior of policy 𝜋 𝑗 (𝑎 𝑗 |𝑠).
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The proof is deferred to Appendix A.5.

Since the agent 𝑖 does not know the reward of the agent 𝑗 , we

have to find a function 𝑟 𝑗 to estimate 𝑟 𝑗 . The objective of optimizing

𝑟 𝑗 is to minimize the KL divergence between the optimal opponent

model derived by estimated reward function 𝑟 𝑗 and the history data

of agent 𝑗 . Let 𝜏 𝑗 = {𝑠0, 𝑎
𝑗

0
, 𝑎

− 𝑗

0
, 𝑠1, 𝑎

𝑗

1
, 𝑎

− 𝑗

1
, · · · } be the history data

of agent 𝑗 . The probability of generating 𝜏 𝑗 through taking actions

{𝑎 𝑗
0
, 𝑎

𝑗

1
, · · · } is

𝑃 (𝜏 𝑗 |𝑎 𝑗
0:∞) = 𝑃 (𝑠0)

∞∏
𝑡=1

𝑃 (𝑠𝑡 |𝑠𝑡−1, 𝑎
𝑗

𝑡−1
, 𝑎

− 𝑗

𝑡−1
)𝜌− 𝑗 (𝑎− 𝑗

𝑡−1
|𝑠𝑡−1) .

And the probability of generating 𝜏 𝑗 by the opponent model is

𝜌 𝑗 (𝜏 𝑗 ) =𝑃 (𝑠0)
∞∏
𝑡=1

𝑃 (𝑠𝑡 |𝑠𝑡−1, 𝑎
𝑗

𝑡−1
, 𝑎

− 𝑗

𝑡−1
)𝜌∗𝑗 (𝑎

𝑗

𝑡−1
|𝑠𝑡−1)

𝜌− 𝑗 (𝑎− 𝑗

𝑡−1
|𝑠𝑡−1).

Then the objective to optimize 𝑟 𝑗 is

KL(𝑃 (𝜏 𝑗 ) | |𝜌 𝑗 (𝜏 𝑗 )) = E
[ ∞∑︁
𝑡=0

−𝛾𝑡𝑟 𝑗 (𝑠𝑡 , 𝑎 𝑗𝑡 , 𝑎
− 𝑗
𝑡 )

]
+ logE𝑎 𝑗∼𝜌 𝑗

[
E𝑎− 𝑗∼𝜌− 𝑗

[exp(𝑄 𝑗
𝜌 (𝑠,𝑎𝑎𝑎; 𝜌))]

]
,

where the first expectation is taken with respect to state 𝑠𝑡 ∼
𝑃 (𝑠𝑡 |𝑠𝑡−1, 𝑎

𝑗

𝑡−1
, 𝑎

− 𝑗

𝑡−1
). It is difficult to calculate the optimal oppo-

nent model because E𝑎 𝑗∼𝜌 𝑗

[
exp(𝑄 𝑗

𝜌 (𝑠,𝑎𝑎𝑎; 𝜌))
]
is difficult to esti-

mate. In addition, we use a sample-based method for estimating

E𝑎 𝑗∼𝜌 𝑗

[
exp(𝑄 𝑗

𝜌 (𝑠,𝑎𝑎𝑎; 𝜌))
]
.

KL(𝑃 (𝜏 𝑗 ) | |𝜌 𝑗 (𝜏 𝑗 ))

=E

[ ∞∑︁
𝑡=0

−𝛾𝑡𝑟 𝑗 (𝑠𝑡 , 𝑎 𝑗𝑡 , 𝑎
− 𝑗
𝑡 )

]
+ logE𝜏 𝑗∼𝜌 (𝜏 𝑗 )

[
exp(∑∞

𝑡=0
𝛾𝑡𝑟 𝑗 (𝑠𝑡 ,𝑎𝑎𝑎𝑡 ))

𝜌 (𝜏 𝑗 )

] (6)

If 𝑟
𝑗

𝜓
is parameterized by𝜓 , the gradient of KL(𝑃 (𝜏 𝑗 ) | |𝜌 𝑗 (𝜏 𝑗 )) with

respect to𝜓 is

𝑑KL(𝑃 (𝜏 𝑗 ) | |𝜌 𝑗 (𝜏 𝑗 ))
𝑑𝜓

= E

[ ∞∑︁
𝑡=0

−𝛾𝑡
𝑟
𝑗

𝜓
(𝑠𝑡 , 𝑎 𝑗𝑡 , 𝑎

− 𝑗
𝑡 )

𝑑𝜓

]
+ 1

𝑍
E𝜏 𝑗∼𝜌 (𝜏 𝑗 )

[
𝑤 𝑗

𝑑
∑∞
𝑡=0

𝛾𝑡𝑟
𝑗

𝜓
(𝑠𝑡 ,𝑎𝑎𝑎𝑡 )

𝑑𝜓

]
,

(7)

where𝑤 𝑗 =
exp(∑∞

𝑡=0
𝛾𝑡𝑟

𝑗

𝜓
(𝑠𝑡 ,𝑎𝑎𝑎𝑡 ) )

𝜌 (𝜏 𝑗 ) and 𝑍 = E𝜏 𝑗∼𝜌 (𝜏 𝑗 ) [𝑤 𝑗 ].
VPG is for tabular cases and is impractical in problems with high

dimensions or continuous action. To handle the problems, we pro-

pose the variational actor-critic method, which can be implemented

in a complex continuous environment. We use neural-network to

parameterize the policy 𝜋𝜃 , opponent model 𝜌𝜙 , the action-value

function 𝑄𝜔 , and the reward function 𝑟𝜓 .

The objective to optimize the policy 𝜋𝜃 is to minimize the KL

divergence

𝐽𝜋 (𝜃 ; 𝑠) = E𝑎−𝑖∼𝜌 ( · |𝑠 )[
KL

(
𝜋𝜃𝑖 (·|𝑠) | | exp(𝑄𝑖

𝜔 (𝑠, ·, 𝑎−𝑖 ) −𝑉 𝑖 (𝑠)
)]

.
(8)

The objective to optimize the action-value function 𝑄𝜔 is to mini-

mize:

𝐽𝑄 (𝜔) = E(𝑠𝑡 ,𝑎𝑖𝑡 ,𝑎−𝑖
𝑡 )∼D

[
1

2

(
𝑄𝑖
𝜔

(
𝑠𝑡 , 𝑎

𝑖
𝑡 , 𝑎

−𝑖
𝑡

)
−𝑟 𝑖

(
𝑠𝑡 , 𝑎

𝑖
𝑡 , 𝑎

−𝑖
𝑡

)
− 𝛾E𝑠𝑡+1∼𝑝𝑠

[
𝑉 (𝑠𝑡+1)

] )2

]
,

(9)

with

𝑉 𝑖 (𝑠𝑡+1) = 𝑄𝑖
�̄�

(
𝑠𝑡+1, 𝑎

𝑖
𝑡+1

, 𝑎−𝑖𝑡+1

)
− log 𝜌𝜙

(
𝑎−𝑖𝑡+1

| 𝑠𝑡+1

)
− log𝜋𝜃

(
𝑎𝑖𝑡+1

| 𝑠𝑡+1, 𝑎
−𝑖
𝑡+1

)
+ log 𝑃

(
𝑎−𝑖𝑡+1

| 𝑠𝑡+1

)
,

where 𝑄𝑖
�̄� is target Q function.

The gradient of (8) with respect to 𝜃 is

∇𝜃 𝐽𝜋 (𝜃 ; 𝑠) = E𝑎−𝑖∼𝜌 ( · |𝑠 ) [∇𝜃 log𝜋𝜃𝑖 (𝑎 |𝑠)

+ (∇𝑎𝜋
𝜃
𝑖 (𝑎 |𝑎

− 𝑗 , 𝑠) − ∇𝑎𝑄
𝑖 (𝑠, 𝑎, 𝑎−𝑖 ))∇𝜃 𝑓𝜃 (𝜖 ; 𝑠, 𝑎−𝑖 )]

(10)

where 𝑎 is evaluated at 𝑓𝜃 (𝜖 ; 𝑠, 𝑎−𝑖 ). The gradient of (9) with respect
to 𝜔 is

∇𝜔 𝐽𝑄 (𝜔) =∇𝜔𝑄
𝑖
𝜔

(
𝑠𝑡 , 𝑎

𝑖
𝑡 , 𝑎

−𝑖
𝑡

) (
𝑄𝑖
𝜔

(
𝑠𝑡 , 𝑎

𝑖
𝑡 , 𝑎

−𝑖
𝑡

)
−𝑟 𝑖

(
𝑠𝑡 , 𝑎

𝑖
𝑡 , 𝑎

−𝑖
𝑡

)
− 𝛾E𝑠𝑡+1∼𝑝𝑠

[
𝑉 (𝑠𝑡+1)

] )
Then the pseudo-code of the variational inference actor-critic

method named Multi-agent Inference (MAI) is listed in the Algo-

rithm 2.

Experiments: As MAI incorporates entropy regularization nat-

urally, it enjoys stronger exploration ability. We test its explo-

ration ability on a challenging differential game. Differential game

is adopted from [22]. The two agents in this game have contin-

uous action space. All the agents share the same reward func-

tion depending on the joint action (𝑎1, 𝑎2) following the equa-

tions: 𝑟1
(
𝑎1, 𝑎2

)
= 𝑟2

(
𝑎1, 𝑎2

)
= max (𝑓1, 𝑓2), where 𝑓1 = 0.8 ×[

−
(
𝑎1+5

3

)
2

−
(
𝑎2+5

3

)
2

]
, 𝑓2 = 1.0 ×

[
−

(
𝑎1−5

1

)
2

−
(
𝑎2−5

1

)
2

]
+ 10.

This task is highly challenging for most continuous gradient-based

reinforcement learning algorithms, as the gradient updates often

guide the agent towards suboptimal solutions. The training process

includes 200 episodes with 25 steps per episode. We compare MAI

with MADDPG [14], MASQL [26] and independent DDPG [13] in

this task. The learning curves are shown in Figure 2a. Only MAI

shows the capability of converging to the global optimum, while

most of the baselines can only reach the sub-optimal point. The

result illustrates that the algorithm derived from the variational

inference framework has stronger exploration ability.

To evaluate that MAI can converge on the Markov potential

game, we conduct MAI on a Markov potential game task named

non-atomic routing game. We adopt the game from [15]. Agents in

this game are self-interested. Each agent learns how to split their

commodity in a way that maximizes rewards. We compare MAI

with MADDPG, MASQL and independent DDPG in this task. The
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(a) The learning curves of MAI
and other baselines in differen-
tial game.
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(b) The learning curves of MAI
and other baselines in non-
atomic routing game.

Figure 2: Learning curves in differential game and non-
atomic routing game.

learning curves are shown in Figure 2b. MAI achieves a higher

return than other baselines. The learning curve of MAI is smoother

and other algorithms suffer from high variance.

The result of MASQL can be viewed as an ablation study of MAI.

As MASQL does not use the opponent modeling, it is not able to

converge to the global optimum. It is notable that the application

of MAI is not limited to the cases with continuous action space.

We also test MAI on games where agents share the same reward

function. The opponent modeling can be applied to the cases where

agents have different reward functions.

Algorithm 2Multi-agent Inference (MAI)

Initializing replay buffer D, 𝜃 , 𝜔 ,𝜓 and 𝜙 .

for Each episode 𝑑 = 1, 2, · · · do
for 𝑖 ∈ N do

For current state 𝑠𝑡 compute 𝑎−𝑖𝑡 ∼ 𝜌 (·|𝑠𝑡 ), 𝑎𝑖𝑡 ∼ 𝜋𝑖 (·|𝑠𝑡 , 𝑎−𝑖𝑡 )

Observe next state 𝑠𝑡+1, opponent action 𝑎−𝑖𝑡 and save the

new experience in the reply buffer D.

Update opponent model using Algorithm 3.

Update 𝜋𝑖 using (10).

end for
end for

Output: policy 𝜋𝑖 , 𝑖 ∈ N , opponent model 𝜌

Algorithm 3 Opponent modeling (OM)

Require: Initial parameters of the reward function𝜓 , trajectory

replay buffer D
1: for 𝑖 = 1, 2, . . . do
2: Sample trajectory 𝜏 from D
3: for 𝑗 = 1 to 𝑁 do
4: Update 𝑟 𝑗 (𝑠𝑡 ,𝑎𝑎𝑎𝑡 ) using Equation (7)

5: Update 𝜌 𝑗 (𝜏 𝑗 ) using Equation (5)

6: end for
7: end for

Ensure: Optimized opponent model 𝜌

5.2 Inference for mean field Nash equilibrium
Although this algorithm is distributed, Solving 𝑁 -player game is

still intractable when the 𝑁 is large. If all the agents are homo-

geneous and interchangeable, we can alleviate this problem. The

states and actions of other agents can be reduced into a joint distri-

bution of the population state-action pair L𝑡 = P𝑠𝑡 ,𝑎𝑡 ∈ P(S ×A),
which is named mean field. The mean field follows the Kolmogorov

equation

L𝑡 (𝑠, 𝑎) =𝑞𝑘𝑖 (𝑎 |𝑠)∑︁
𝑠𝑡 ∈S

∑︁
𝑎𝑡 ∈A

𝑃 (𝑠 |𝑠𝑡−1, 𝑎𝑡−1,L𝑡−1)L𝑡−1 (𝑠𝑡 , 𝑎𝑡 ) .

Given the mean field, the objective to optimize the policy 𝜋 is to

maximize the likelihood 𝑃 (O0:𝑇 = 1|𝜋,L0:𝑇 ). Denote the trajectory
𝜏 = {𝑠0, 𝑎0,L0, 𝑠1, 𝑎1,L1, · · · }. The 𝑞(𝜏) is the probability to gen-

erate the trajectory 𝜏 = {𝑠0, 𝑎0,L0, 𝑠1, 𝑎1,L1, · · · } by the policy 𝜋 .

The 𝑞(𝜏) can be factorized as follows.

𝑞(𝜏) =𝑃 (𝑠0)
𝑇−1∏
𝑡=0

𝑞(𝑎𝑡 |𝑠𝑡 )𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ,L𝑡 )

=𝑃 (𝑠0)
𝑇−1∏
𝑡=0

𝜋 (𝑎𝑡 |𝑠𝑡 )𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ,L𝑡 )

To stabilize the learning process, we introduce a prior distribu-

tion policy that uses information from past iterations.

log 𝑃 (O0:𝑇 = 1|𝜋,L0:𝑇 )

≥
∑︁

𝑠0:𝑇 ∈S,𝑎0:𝑇 ∈A
𝑞(𝜏) log

𝑃 (O0:𝑇 = 1|𝜋,L0:𝑇 )
𝑞(𝜏)

=

𝑇∑︁
𝑡=0

E

[
𝑟 (𝑠𝑡 , 𝑎𝑡 ,L𝑡 ) − log

𝜋𝑡 (𝑎𝑡 |𝑠𝑡 )
𝜋𝑡 (𝑎𝑡 |𝑠𝑡 )

]
where 𝜋𝑡 (𝑎𝑡 |𝑠𝑡 ) is the prior policy. The objective of agents 𝑖 is to
maximizeE

∑𝑇
𝑡=0

[
𝑟 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 ,L𝑡 )−log𝜋𝑖 (𝑎𝑡 |𝑠𝑡 ,L𝑡 )+log𝜋 (𝑎𝑡 |𝑠𝑡 ,L𝑡 )

]
,

where the expectation is taken with respect to 𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡 , 𝑎𝑡 ,L𝑡 ),
𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ,L𝑡 ). Denote the action-value function

𝑄𝑡 (𝑠𝑡 , 𝑎𝑡 ,L𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 ,L𝑡 )

+
∑︁
𝑠∈S

𝑃 (𝑠 |𝑠𝑖𝑡 , 𝑎𝑖𝑡 ,L𝑡 )E𝑎∼𝜋 ( · |𝑠,L𝑡+1 )

[
𝑄𝑡+1 (𝑠, 𝑎,L𝑡+1)

− log𝜋 (𝑎𝑡 |𝑠𝑡 ,L𝑡 ) + log𝜋 (𝑎𝑡 |𝑠𝑡 ,L𝑡 )
]

(11)

with the terminal condition 𝑄𝑇 (𝑠𝑇 , 𝑎𝑇 ,L𝑇 ) = 𝑟 (𝑠𝑇 , 𝑎𝑇 ,L𝑇 ). The
optimal policy has the closed form

𝜋𝑡 (𝑎 |𝑠) =
𝜋𝑡 (𝑎 |𝑠) exp(𝑄𝑡 (𝑠, 𝑎,L))∑

𝑎∈A 𝜋𝑡 (𝑎 |𝑠) exp(𝑄𝑡 (𝑠, 𝑎,L)) (12)
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Figure 3: The graphic model of correlated equilibrium. Com-
pared with Figure 1, the correlated signal 𝜔 is added. We
assume that all the agents choose actions dependent on this
publicly observed random variable 𝜔 .

Algorithm 4Mean field Bayesian Q-learning

Require: Initial L0
and initial prior policy 𝜋 .

for k=1, 2, · · · do
Compute the soft Q function 𝑄𝑡 (𝑠, 𝑎,L𝑘

𝑡 ) using (11).
Compute 𝜋𝑘𝑡 using (12).

Compute mean field L𝑡 (𝑠, 𝑎) induced by 𝜋𝑘𝑡 from the simula-

tor.

end for

Then we propose our Algorithm 4 named Mean field Bayesian

Q-learning. It is notable that mean field Bayesian Q-learning is

consistent with RelEnt iteration [5]. Here we theoretically derive

the relative entropy regularizer directly rather than treat it as a

heuristic modification.

5.3 Inference for correlated equilibrium
In the correlated equilibrium, we assume that all agents take ac-

tions according to a publicly observed random variable, namely

the correlated signal 𝜔 . The graphical model for solving correlated

equilibrium is shown in Figure 3. We assume that the correlated

signal is sampled from a distribution 𝜎 (𝜔) over the signal space Ω.
The trajectory probability can be factorized in a such way.

𝑞(𝑎𝑖
0:𝑇 , 𝑎

−𝑖
0:𝑇 , 𝑠0:𝑇 )

=𝑃 (𝑠0)
𝑇∏
𝑡=0

∑︁
𝜔𝑡 ∈Ω

𝜎 (𝜔𝑡 )𝑃 (𝑠𝑡+1 |𝑠𝑡 ,𝑎𝑎𝑎𝑡 )𝑞(𝑎𝑖𝑡 |𝑎−𝑖𝑡 , 𝑠𝑡 , 𝜔𝑡 )

𝑞(𝑎−𝑖𝑡 |𝑠𝑡 , 𝑧𝑖 )

=𝑃 (𝑠0)
𝑇∏
𝑡=0

∑︁
𝜔𝑡 ∈Ω

𝜎 (𝜔𝑡 )𝑃 (𝑠𝑡+1 |𝑠𝑡 ,𝑎𝑎𝑎𝑡 )𝜋 (𝑎𝑖𝑡 |𝑠𝑡 , 𝑎−𝑖𝑡 , 𝜔𝑡 )

𝜌 (𝑎−𝑖𝑡 |𝑠𝑡 , 𝜔𝑡 )

The correlated equilibrium can be solved using the methods for

solving Nash equilibrium. The correlated signal𝜔 can be augmented

into the state 𝑠 . And the transition dynamic of the augmented state

𝑠 = (𝑠, 𝜔) is 𝑃 (𝑠𝑡+1 |𝑠𝑡 ,𝑎𝑎𝑎𝑡 ) = 𝜎 (𝜔𝑡+1)
∑
𝜔𝑡 ∈Ω 𝑃 (𝑠𝑡+1 |𝑠𝑡 ,𝑎𝑎𝑎𝑡 )𝜎 (𝜔𝑡 ).

5.4 Inference for Nash equilibrium in zero-sum
game

There are two player in the zero-sum game and their rewards

are opposite. Given the reward function 𝑟 𝑖 (𝑠, 𝑎𝑖 , 𝑎−𝑖 ) of agent 𝑖 ,
the reward of agent −𝑖 is 𝑟−𝑖 (𝑠, 𝑎𝑖 , 𝑎−𝑖 ) = 𝑟 𝑖 (𝑠, 𝑎𝑖 , 𝑎−𝑖 ). Therefore,
log 𝑃 (O𝑖 |𝑠, 𝑎𝑖 , 𝑎−𝑖 ) = − log 𝑃 (O−𝑖 |𝑠, 𝑎𝑖 , 𝑎−𝑖 ). The objective of agent
𝑖 is the same as the stochastic game, while the objective of the other

agent is also known for agent 𝑖 . Hence it is unnecessary for agent 𝑖

to estimate the reward function of agent −𝑖 . Under the setting of
zero-sum game, the optimal policy of agent −𝑖 is

𝜌∗−𝑖 (𝑎
−𝑖 |𝑠) =

𝜋−𝑖 (𝑎−𝑖 |𝑠) exp(𝑄−𝑖
𝜌 (𝑠,𝑎𝑎𝑎; 𝜌))

E𝑎−𝑖∼𝜌−𝑖
[
exp(𝑄−𝑖

𝜌 (𝑠,𝑎𝑎𝑎; 𝜌))
]

=
𝜋−𝑖 (𝑎−𝑖 |𝑠) exp(−𝑄𝑖 (𝑠,𝑎𝑎𝑎; 𝜌))
E𝑎−𝑖∼𝜌−𝑖

[
exp(−𝑄𝑖 (𝑠,𝑎𝑎𝑎; 𝜌))

]
The opponent policy is updated after the action-value function

of agent 𝑖 is updated, which simplifies the process of opponent

modeling.

6 CONCLUSION
In this paper, we propose a unified variational inference framework

for solving general-sum stochastic games, which builds the connec-

tion between game theory and probability inference. We prove that

the optimal policy under our framework is an 𝜖-Nash equilibrium.

Leveraging this unified framework, we instantiate different meth-

ods to solve Nash equilibrium in the general-sum stochastic game,

Nash equilibrium in the mean-field game, correlated equilibrium

in the general-sum stochastic game, and Nash equilibrium in the

zero-sum stochastic game. We prove that our method can converge

in the Markov potential game. We also propose an algorithm to

model opponents using variational inference. Furthermore, the pro-

posed opponent modeling algorithm enables agents to reason about

the behaviors of others, even in competitive environments with

unaligned objectives.
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A PROOF
A.1 Proof of Proposition 5.5

Proof. From Pinsker’s inequality,

𝐷𝑇𝑉 (𝜌 (·|𝑠), 𝜋−𝑖 (·|𝑠)) ≤
√︂

1

2

KL(𝜌 (·|𝑠) | |𝜋−𝑖 (·|𝑠)) ≤
√︂

1

2

𝜖𝜌 .

Denote the value function derived using the opponent model as

𝑉 𝑖 (𝑠 ;𝜋𝜋𝜋). Define 𝑃𝜋𝜋𝜋𝜌 (𝑠′ |𝑠) := E𝑎−𝑖∼𝜌 ( · |𝑠 ) [
∑
𝑎∈A𝑖 𝑃 (𝑠′ |𝑠, 𝑎, 𝑎−𝑖 )𝜋 (𝑎 |𝑠, 𝑎−𝑖 )].

|𝑉 𝑖 (𝑠;𝜋𝜋𝜋) −𝑉 𝑖 (𝑠;𝜋𝜋𝜋) |
≤2(1 + log |A𝑖 |)𝐷𝑇𝑉 (𝜌 (·|𝑠), 𝜋−𝑖 (·|𝑠))
+ 𝛾 |E𝑠′∼𝑃𝜋𝜋𝜋

𝜌 (𝑠′ |𝑠 )𝑉
𝑖 (𝑠′;𝜋𝜋𝜋) − E𝑠′∼𝑃𝜋𝜋𝜋

𝜋𝜋𝜋−𝑖 (𝑠′ |𝑠 )𝑉
𝑖 (𝑠′;𝜋𝜋𝜋) |

+ 𝛾 |E𝑠′∼𝑃𝜋𝜋𝜋
𝜌 (𝑠′ |𝑠 ) [𝑉 𝑖 (𝑠′;𝜋𝜋𝜋) −𝑉 𝑖 (𝑠′;𝜋𝜋𝜋)] | − KL(𝜌 (·|𝑠) | |𝜋−𝑖 (·|𝑠))

≤2(1 + log |A𝑖 |)𝐷𝑇𝑉 (𝜌 (·|𝑠), 𝜋−𝑖 (·|𝑠))
+ 2𝛾 (max

𝑠′∈S
𝑉 𝑖 (𝑠′;𝜋𝜋𝜋))𝐷𝑇𝑉 (𝑃𝜋𝜋𝜋𝜌 (𝑠′ |𝑠), 𝑃𝜋𝜋𝜋𝜋𝜋𝜋−𝑖 (𝑠′ |𝑠))

+ 𝛾 max

𝑠′∼S
|𝑉 𝑖 (𝑠′;𝜋𝜋𝜋) −𝑉 𝑖 (𝑠′;𝜋𝜋𝜋) | − KL(𝜌 (·|𝑠) | |𝜋−𝑖 (·|𝑠))

≤2(1 + log |A𝑖 | +
𝛾 (1 + log |A𝑖 |)

1 − 𝛾
)
√︂

1

2

𝜖𝜌

+ 𝛾 max

𝑠′∼S
|𝑉 𝑖 (𝑠′;𝜋𝜋𝜋) −𝑉 𝑖 (𝑠′;𝜋𝜋𝜋) | + 𝜖𝜌

=
2(1 + log |A𝑖 |)

1 − 𝛾

√︂
1

2

𝜖𝜌 + 𝛾 max

𝑠′∼S
|𝑉 𝑖 (𝑠′;𝜋𝜋𝜋) −𝑉 𝑖 (𝑠′;𝜋𝜋𝜋) | + 𝜖𝜌

Then the estimated error of value function can be derived

max

𝑠∼S
|𝑉 𝑖 (𝑠;𝜋𝜋𝜋) −𝑉 𝑖 (𝑠;𝜋𝜋𝜋) | ≤ 2(1 + log |A𝑖 |)

(1 − 𝛾)2

√︂
1

2

𝜖𝜌 +
𝜖𝜌

1 − 𝛾

Using soft Bellman equation, we have that

max

𝑠∈S,𝑎𝑎𝑎∈A
|𝑄𝑖 (𝑠,𝑎𝑎𝑎;𝜋𝜋𝜋) − �̂�𝑖 (𝑠,𝑎𝑎𝑎;𝜋𝜋𝜋) | ≤ 𝛿

□

A.2 Proof of Proposition 5.6
Proof. We denote 𝜋𝑖 (𝑎 |𝑠) =

∑
𝑎−𝑖 ∈A−𝑖 𝜋

𝜃𝑠
𝑖
(𝑎 |𝑎−𝑖 , 𝑠)𝜌 (𝑎−𝑖 |𝑠).

Then the joint policy 𝜋𝜋𝜋𝜃𝑠 (𝑎𝑎𝑎 |𝑠) = ∏
𝑖∈N 𝜋

𝜃𝑠
𝑖
(𝑎𝑖 |𝑠). For all 𝑖, 𝑗 ∈ N ,

𝑖 ≠ 𝑗 .

E𝑎𝑎𝑎∼𝜋𝜋𝜋𝜃𝑠 ( · |𝑠 )
[
∇𝜃𝑠𝜋

𝜃𝑠
𝑖
(𝑎𝑖 |𝑠)∇𝜃𝑠𝜋

𝜃𝑠
𝑗
(𝑎 𝑗 |𝑠)𝑇

]
= E𝑎𝑎𝑎∼𝜋𝜋𝜋𝜃𝑠 ( · |𝑠 )

[
∇𝜃𝑠𝜋

𝜃𝑠
𝑖
(𝑎𝑖 |𝑠)

] [
∇𝜃𝑠𝜋

𝜃𝑠
𝑗
(𝑎 𝑗 |𝑠)𝑇

]
= 0
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Then the Fisher matrix

F (𝜃𝑠 ) =E[∇𝜃𝑠 log𝜋𝜋𝜋𝜃 (𝑎𝑎𝑎 |𝑠)∇𝜃𝑠 log𝜋𝜋𝜋𝜃𝑠 (𝑎𝑎𝑎 |𝑠)𝑇 ]

=
∑︁
𝑖∈N
E
𝑎𝑖∼𝜋𝜃𝑠

𝑖
(𝑎𝑖 |𝑠 ) [∇𝜃𝑠 log𝜋

𝜃𝑠
𝑖
(𝑎𝑖 |𝑠)∇𝜃𝑠 log𝜋

𝜃𝑠
𝑖
(𝑎𝑖 |𝑠)𝑇 ] .

Therefore F (𝜃𝑠 ) is a block-diagonal matrix, and each block is cor-

responding to the policy parameter of an agent. Since the pseudo-

inverse of a block-diagonalmatrix is block-diagonal with the pseudo-

inverse of each block of the original matrix, VPG has the same

dynamics as global NPG. □

A.3 Proof of Lemma 5.7
Proof. As the gradient of the value functions equals the poten-

tial function, we prove the smoothness of value functions. Define

the Φ̃𝑖 (𝑠, 𝜋𝜋𝜋) = E[∑∞
𝑡=0

𝛾𝑡𝑟 𝑖 (𝑠𝑡 ,𝑎𝑎𝑎𝑡 )], where the expectation is taken

with respect to 𝑎𝑎𝑎𝑡 ∼ 𝜋𝜋𝜋𝑖 (·|𝑠𝑡 ), 𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡 ,𝑎𝑎𝑎𝑡 ). The value function
can be decomposed

Φ(𝑠, 𝜋𝜋𝜋) =Φ̃𝑖 (𝑠, 𝜋𝜋𝜋) + H (𝜋𝜋𝜋)

where H(𝜋𝜋𝜋) = −E[∑∞
𝑡=0

𝛾𝑡𝜋𝜋𝜋 (𝑎𝑎𝑎𝑡 |𝑠𝑡 ) log𝜋𝜋𝜋 (𝑎𝑎𝑎𝑡 |𝑠𝑡 )]. We first bound

the smoothness of Φ̃𝑖 (𝑠, 𝜋𝜋𝜋). Let 𝜋𝜋𝜋𝛼 := 𝜋𝜋𝜋𝜃+𝛼𝑢 , where 𝑢 is a unit

vector.

𝑑𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎 | 𝑠)
𝑑𝛼

����
𝛼=0

= 𝜋𝜋𝜋 (𝑎𝑎𝑎 |𝑠)
∑︁
𝑖∈N

∑︁
𝑎′∈A𝑖

𝑢𝑖,𝑠,𝑎′,𝑎−𝑖 (I𝑎′=𝑎𝑖 − 𝜋 (𝑎′ |𝑠, 𝑎−𝑖 ))

���� 𝑑𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎 | 𝑠)
𝑑𝛼

����
𝛼=0

����
=

������𝜋𝜋𝜋 (𝑎𝑎𝑎 |𝑠) ∑︁
𝑖∈N

∑︁
𝑎′∈A𝑖

𝑢𝑖,𝑠,𝑎′,𝑎−𝑖 (I𝑎′=𝑎𝑖 − 𝜋𝑖 (·|𝑠, 𝑎−𝑖 ))

������
≤𝜋𝜋𝜋 (𝑎𝑎𝑎 |𝑠)𝑛 ©«|𝑢𝑖,𝑠,𝑎𝑖 ,𝑎−𝑖 | +

∑︁
𝑖∈N

∑︁
𝑎′∈A𝑖

|𝑢𝑖,𝑠,𝑎𝑖 ,𝑎−𝑖𝜋𝑖 (𝑎′ |𝑠, 𝑎−𝑖 ) |ª®¬
≤(𝑛 + 1)𝜋𝜋𝜋 (𝑎𝑎𝑎 |𝑠)

𝑑2𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎 | 𝑠′)
(𝑑𝛼)2

����
𝛼=0

=𝜋𝜋𝜋 (𝑎𝑎𝑎 |𝑠) (𝑢𝑖,𝑠,𝑎𝑖 ,𝑎−𝑖𝑢 𝑗,𝑠,𝑎 𝑗 ,𝑎− 𝑗 −
∑︁

𝑖, 𝑗∈N

∑︁
𝑎′∈A 𝑗

𝑢𝑖,𝑠,𝑎𝑖 ,𝑎−𝑖𝑢 𝑗,𝑠,𝑎′,𝑎− 𝑗 𝜋 𝑗 (𝑎′ |𝑠, 𝑎− 𝑗 )

−
∑︁

𝑖, 𝑗∈N

∑︁
𝑎′∈A𝑖

𝑢 𝑗,𝑠,𝑎′,𝑎−𝑖𝑢𝑖,𝑠,𝑎 𝑗 ,𝑎−ℎ𝜋𝑖 (𝑎′ |𝑠, 𝑎−𝑖 )

+ 2

∑︁
𝑖, 𝑗∈N

∑︁
𝑎′∈A𝑖

∑︁
𝑎′′∈A 𝑗

𝑢𝑖,𝑠,𝑎′,𝑎−𝑖𝑢 𝑗,𝑠,𝑎′′,𝑎− 𝑗 𝜋𝑖 (𝑎′ |𝑠, 𝑎−𝑖 )𝜋 𝑗 (𝑎′′ |𝑠, 𝑎− 𝑗 )

+
∑︁
𝑖∈N

∑︁
𝑎′∈A𝑖

𝑢2

𝑖,𝑠,𝑎′,𝑎−𝑖𝜋𝑖 (𝑎′ |𝑠, 𝑎−𝑖 ))

���� 𝑑2𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎 | 𝑠′)
(𝑑𝛼)2

����
𝛼=0

����
≤𝜋𝜋𝜋 (𝑎𝑎𝑎 |𝑠)

(
𝑢𝑖,𝑠,𝑎𝑖 ,𝑎−𝑖𝑢 𝑗,𝑠,𝑎 𝑗 ,𝑎− 𝑗

+
�� ∑︁
𝑖, 𝑗∈N

∑︁
𝑎′∈A 𝑗

𝑢𝑖,𝑠,𝑎𝑖 ,𝑎−𝑖𝑢 𝑗,𝑠,𝑎′,𝑎− 𝑗 𝜋 𝑗 (𝑎′ |𝑠, 𝑎− 𝑗 )
��

+
�� ∑︁
𝑖, 𝑗∈N

∑︁
𝑎′∈A𝑖

𝑢 𝑗,𝑠,𝑎′,𝑎−𝑖𝑢𝑖,𝑠,𝑎 𝑗 ,𝑎−ℎ𝜋𝑖 (𝑎′ |𝑠, 𝑎−𝑖 )
��

+ 2

�� ∑︁
𝑖, 𝑗∈N

∑︁
𝑎′∈A𝑖

∑︁
𝑎′′∈A 𝑗

𝑢𝑖,𝑠,𝑎′,𝑎−𝑖𝑢 𝑗,𝑠,𝑎′′,𝑎− 𝑗 𝜋𝑖 (𝑎′ |𝑠, 𝑎−𝑖 )𝜋 𝑗 (𝑎′′ |𝑠, 𝑎− 𝑗 )
��

+
�� ∑︁
𝑖∈N

∑︁
𝑎′∈A𝑖

𝑢2

𝑖,𝑠,𝑎′,𝑎−𝑖𝜋𝑖 (𝑎′ |𝑠, 𝑎−𝑖 )
��)

≤2(1 + 𝑛 + 𝑛2)𝜋𝜋𝜋 (𝑎𝑎𝑎 |𝑠)

Let 𝑃 (𝛼) be the state-action transition matrix under 𝜋𝜋𝜋 ,

[𝑃 (𝛼)] (𝑠,𝑎𝑎𝑎)→(𝑠′,𝑎𝑎𝑎′ ) = 𝜋𝜋𝜋𝛼
(
𝑎𝑎𝑎′ | 𝑠′

)
𝑃

(
𝑠′ | 𝑠,𝑎𝑎𝑎

)
.

We can differentiate 𝑃 (𝛼) w.r.t 𝛼 to get[
𝑑𝑃 (𝛼)
𝑑𝛼

�����
𝛼=0

]
(𝑠,𝑎𝑎𝑎)→(𝑠′,𝑎𝑎𝑎′ )

=
𝑑𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎′ | 𝑠′)

𝑑𝛼

����
𝛼=0

𝑃
(
𝑠′ | 𝑠,𝑎𝑎𝑎

)
.

For an arbitrary vector 𝑥 ,[
𝑑𝑃 (𝛼)
𝑑𝛼

�����
𝛼=0

𝑥

]
𝑠,𝑎𝑎𝑎

=
∑︁
𝑎𝑎𝑎′,𝑠′

𝑑𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎′ | 𝑠′)
𝑑𝛼

�����
𝛼=0

𝑃
(
𝑠′ | 𝑠,𝑎𝑎𝑎

)
𝑥𝑎𝑎𝑎′,𝑠′

max

∥𝑢 ∥2=1

������
[
𝑑𝑃 (𝛼)
𝑑𝛼

�����
𝛼=0

𝑥

]
𝑠,𝑎𝑎𝑎

������
= max

∥𝑢 ∥2=1

������ ∑︁𝑎′,𝑠′ 𝑑𝜋𝜋𝜋
𝛼 (𝑎𝑎𝑎′ | 𝑠′)
𝑑𝛼

�����
𝛼=0

𝑃
(
𝑠′ | 𝑠,𝑎𝑎𝑎

)
𝑥𝑎𝑎𝑎′,𝑠′

������
≤

∑︁
𝑎𝑎𝑎′,𝑠′

���� 𝑑𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎′ | 𝑠′)
𝑑𝛼

����
𝛼=0

��𝑃 (
𝑠′ | 𝑠,𝑎𝑎𝑎

) ��𝑥𝑎𝑎𝑎′,𝑠′ ����
≤

∑︁
𝑠′

𝑃
(
𝑠′ | 𝑠,𝑎𝑎𝑎

)
∥𝑥 ∥∞

∑︁
𝑎𝑎𝑎′

���� 𝑑𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎′ | 𝑠′)
𝑑𝛼

����
𝛼=0

����
≤

∑︁
𝑠′

𝑃
(
𝑠′ | 𝑠,𝑎𝑎𝑎

)
∥𝑥 ∥∞ (𝑛 + 1)

≤ (𝑛 + 1)∥𝑥 ∥∞ .

By definition of ℓ∞ norm,

max

∥𝑢 ∥2=1

𝑑𝑃 (𝛼)𝑑𝛼
𝑥


∞

≤ (𝑛 + 1)∥𝑥 ∥∞

Similarly, we get[
𝑑2𝑃 (𝛼)
(𝑑𝛼)2

�����
𝛼=0

]
(𝑠,𝑎𝑎𝑎)→(𝑠′,𝑎𝑎𝑎′ )

=
𝑑2𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎′ | 𝑠′)

(𝑑𝛼)2

����
𝛼=0

𝑃
(
𝑠′ | 𝑠,𝑎𝑎𝑎

)
.

An identical argument leads to that, for arbitrary 𝑥 ,

max

∥𝑢 ∥2=1

 𝑑2𝑃 (𝛼)
(𝑑𝛼)2

����
𝛼=0

𝑥


∞

≤ 2(1 + 𝑛 + 𝑛2)∥𝑥 ∥∞
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max

∥𝑢 ∥2=1

∥(𝐼 − 𝛾𝑃 (𝛼))−1𝑥 ∥∞ = ∥
∞∑︁
𝑛=0

𝛾𝑛𝑃 (𝛼)𝑛𝑥 ∥∞ ≤ 1

1 − 𝛾
∥𝑥 ∥∞

Denote 𝑄𝑖 (𝑠,𝑎𝑎𝑎;𝜋𝜋𝜋𝛼 ) as the action value function of 𝜋𝜋𝜋𝛼 .

max

∥𝑢 ∥2=1

����𝑑𝑄𝑖 (𝑠,𝑎𝑎𝑎;𝜋𝜋𝜋𝛼 )
𝑑𝛼

����
= max

∥𝑢 ∥2=1

𝛾

�����𝑒𝑇𝑖,𝑠,𝑎𝑎𝑎 (𝐼 − 𝛾𝑃 (𝛼))−1
𝑑𝑃 (0)
𝑑𝛼

(𝐼 − 𝛾𝑃 (𝛼))−1𝑟

�����
≤𝛾 (𝑛 + 1)
(1 − 𝛾)2

,

where 𝑟 is the reward function.

max

∥𝑢 ∥2=1

����𝑑2𝑄𝑖 (𝑠,𝑎𝑎𝑎;𝜋𝜋𝜋𝛼 )
𝑑𝛼2

����
= max

∥𝑢 ∥2=1

�����2𝛾2𝑒𝑇𝑖,𝑠,𝑎𝑎𝑎 (𝐼 − 𝛾𝑃 (𝛼))−1
𝑑𝑃 (0)
𝑑𝛼

(𝐼 − 𝛾𝑃 (𝛼))−1
𝑑𝑃 (0)
𝑑𝛼

(𝐼 − 𝛾𝑃 (𝛼))−1

+ 𝛾 (𝐼 − 𝛾𝑃 (𝛼))−1
𝑑2𝑃 (0)
𝑑𝛼2

(𝐼 − 𝛾𝑃 (𝛼))−1

�����
≤ max

∥𝑢 ∥2=1

�����2𝛾2𝑒𝑇𝑖,𝑠,𝑎𝑎𝑎 (𝐼 − 𝛾𝑃 (𝛼))−1
𝑑𝑃 (0)
𝑑𝛼

(𝐼 − 𝛾𝑃 (𝛼))−1
𝑑𝑃 (0)
𝑑𝛼

(𝐼 − 𝛾𝑃 (𝛼))−1

�����
+

�����𝛾 (𝐼 − 𝛾𝑃 (𝛼))−1
𝑑2𝑃 (0)
𝑑𝛼2

(𝐼 − 𝛾𝑃 (𝛼))−1

�����
≤ 2𝛾2 (𝑛 + 1)2

(1 − 𝛾)3
+ 2𝛾 (1 + 𝑛 + 𝑛2)

(1 − 𝛾)2

Φ̃(𝑠, 𝜋𝜋𝜋𝛼 ) =
∑︁
𝑎𝑎𝑎∈A

𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎 |𝑠)𝑄𝑖 (𝑠,𝑎𝑎𝑎;𝜋𝜋𝜋𝛼 )

𝑑2Φ̃(𝑠, 𝜋𝜋𝜋𝛼 )
𝑑𝛼2

����
𝛼=0

=
∑︁
𝑎𝑎𝑎∈A

𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎 |𝑠) 𝑑2𝑄𝑖 (𝑠,𝑎𝑎𝑎;𝜋𝜋𝜋𝛼 )
𝑑𝛼2

����
𝛼=0

+
∑︁
𝑎𝑎𝑎∈A

𝑑2𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎 | 𝑠)
𝑑𝛼2

����
𝛼=0

𝑄𝑖 (𝑠,𝑎𝑎𝑎;𝜋𝜋𝜋𝛼 )

+ 2

∑︁
𝑎𝑎𝑎∈A

𝑑𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎 | 𝑠)
𝑑𝛼

����
𝛼=0

𝑑𝑄𝑖 (𝑠,𝑎𝑎𝑎;𝜋𝜋𝜋𝛼 )
𝑑𝛼

����
𝛼=0

���� 𝑑2Φ̃(𝑠, 𝜋𝜋𝜋𝛼 )
𝑑𝛼2

����
𝛼=0

���� ≤ ����� ∑︁
𝑎𝑎𝑎∈A

𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎 |𝑠) 𝑑2𝑄𝑖 (𝑠,𝑎𝑎𝑎;𝜋𝜋𝜋𝛼 )
𝑑𝛼2

����
𝛼=0

�����
+

����� ∑︁
𝑎𝑎𝑎∈A

𝑑2𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎 | 𝑠)
𝑑𝛼2

����
𝛼=0

𝑄𝑖 (𝑠,𝑎𝑎𝑎;𝜋𝜋𝜋𝛼 )
�����

+ 2

����� ∑︁
𝑎𝑎𝑎∈A

𝑑𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎 | 𝑠)
𝑑𝛼

����
𝛼=0

����� ���� 𝑑𝑄𝑖 (𝑠,𝑎𝑎𝑎;𝜋𝜋𝜋𝛼 )
𝑑𝛼

����
𝛼=0

����
≤ 2𝛾2 (𝑛 + 1)2

(1 − 𝛾)3
+ 2𝛾 (1 + 𝑛 + 𝑛2)

(1 − 𝛾)2

+ 2(1 + 𝑛 + 𝑛2)
1 − 𝛾

+ 2𝛾 (𝑛 + 1)2

(1 − 𝛾)2

<
2(𝑛 + 1)2

(1 − 𝛾)3

The second step is to bound the smoothness ofH(𝜋𝜋𝜋).

−(𝜋𝜋𝜋𝛼 )𝑇 log𝜋𝜋𝜋𝛼 = − (𝜋𝜋𝜋𝛼 )𝑇 (𝜃 + 𝛼𝑢) + 𝑛 log

∑︁
𝑎𝑎𝑎∈A

exp(𝜃 + 𝛼𝑢)

����− 𝑑2 (𝜋𝜋𝜋𝛼 )𝑇 log𝜋𝜋𝜋𝛼

𝑑𝛼2

����
𝛼=0

����
≤

∑︁
𝑎𝑎𝑎∈A

���� 𝑑2𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎 | 𝑠)
𝑑𝛼2

����
𝛼=0

𝜃

����
+ 2

∑︁
𝑎𝑎𝑎∈A

���� 𝑑𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎 | 𝑠)
𝑑𝛼

����
𝛼=0

���� |𝑢 |
+ 𝑛 max

𝑖∈N

���1𝑇 diag(𝜋𝑖 ⊙ 𝑢) − 𝜋𝑖 (𝜋𝑖 ⊙ 𝑢)𝑇
���

≤2(𝑛2 + 𝑛 + 1) 1 + log max𝑖∈N |𝐴𝑖 |
1 − 𝛾

+ 3𝑛 + 2

���� 𝑑2H(𝜋𝜋𝜋𝛼 )
𝑑𝛼2

����
𝛼=0

���� = �����− 𝑑2

𝑑𝛼2
E[

∞∑︁
𝑡=0

𝛾𝑡𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎𝑡 |𝑠𝑡 ) log𝜋𝜋𝜋𝛼 (𝑎𝑎𝑎𝑡 |𝑠𝑡 )]
�����
𝛼=0

�����
≤ 1

1 − 𝛾

𝑑2 (𝜋𝜋𝜋𝛼 )𝑇 log𝜋𝜋𝜋𝛼

𝑑𝛼2


∞

≤2(𝑛2 + 𝑛 + 1) 1 + log max𝑖∈N |𝐴𝑖 |
(1 − 𝛾)2

+ 3𝑛 + 2

1 − 𝛾
:= 𝑐

Therefore the potential function is ( 2(𝑛+1)2

(1−𝛾 )3
+ 𝑐)-smooth. □

A.4 Proof of Theorem 5.8
Proof. Since Φ is bounded, the monotone sequence {Φ(𝑡 ) }∞

𝑡=0

converges to fixed point. We denote 𝜋𝜋𝜋∗ = lim𝑡→∞ 𝜋𝜋𝜋 (𝑡 )
. Assume

that �̃̃�𝜋𝜋 is a Nash equilibrium policy. We first derive the performance

difference between �̃̃�𝜋𝜋 and 𝜋𝜋𝜋∗.

Φ̃(𝑠; �̃̃�𝜋𝜋) − Φ̃(𝑠;𝜋𝜋𝜋∗) =Φ̃(𝑠; �̃̃�𝜋𝜋) − Φ(𝑠; �̃̃�𝜋𝜋)
+ Φ(𝑠; �̃̃�𝜋𝜋) − Φ(𝑠;𝜋𝜋𝜋∗) + Φ(𝑠;𝜋𝜋𝜋∗) − Φ̃(𝑠;𝜋𝜋𝜋∗)

≤Φ(𝑠;𝜋𝜋𝜋∗) − Φ̃(𝑠;𝜋𝜋𝜋∗) ≤ log |𝐴|
1 − 𝛾

Note that opponent modeling will introduce extra estimation error.

We denote the potential function derived by opponent modeling as
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Φ̂. And the policy derived using opponent modeling is 𝜋𝜋𝜋∗.

∥Φ(·;𝜋𝜋𝜋∗) − Φ(·;𝜋𝜋𝜋∗)∥∞ =∥Φ(·;𝜋𝜋𝜋∗) − Φ̂(·;𝜋𝜋𝜋∗) + Φ̂(·;𝜋𝜋𝜋∗)
− Φ̂(·;𝜋𝜋𝜋∗) + Φ̂(·;𝜋𝜋𝜋∗) − Φ(·;𝜋𝜋𝜋∗)∥∞

≤∥�̂�𝑖 (𝑠,𝑎𝑎𝑎;𝜋𝜋𝜋∗) −𝑄𝑖 (𝑠,𝑎𝑎𝑎;𝜋𝜋𝜋∗)∥∞ ≤ 𝛿

Therefore the performance difference is 𝛿 + log |𝐴 |
1−𝛾 . □

A.5 Proof of Proposition 5.9
Proof. The objective of agent 𝑗 is to maximize log 𝑃 (O 𝑗

0:∞ |𝑞).

log 𝑃 (O 𝑗

0:∞ |𝑞)

= log

∑︁
𝑎𝑎𝑎0:∞,𝑠0:∞

𝑃 (O 𝑗

0:∞,𝑎𝑎𝑎0:∞, 𝑠0:∞ |𝑞)

= log

∑︁
𝑎𝑎𝑎0:∞,𝑠0:∞

𝑞(𝑎𝑎𝑎0:∞, 𝑠0:∞)
𝑃 (O 𝑗

0:∞,𝑎𝑎𝑎0:∞, 𝑠0:∞ |𝑞)
𝑞(𝑎𝑎𝑎0:∞, 𝑠0:∞)

≥
∑︁

𝑎𝑎𝑎0:∞,𝑠0:∞

𝑞(𝑎𝑎𝑎0:∞, 𝑠0:∞) log

𝑃 (O 𝑗

0:∞,𝑎𝑎𝑎0:∞, 𝑠0:∞ |𝑞)
𝑞(𝑎𝑎𝑎0:∞, 𝑠0:∞)

=E𝑎𝑎𝑎0:∞,𝑠0:∞∼𝑞

[ ∞∑︁
𝑡=0

𝑟 𝑗 (𝑠𝑡 ,𝑎𝑎𝑎𝑡 ) − KL(𝜌 𝑗 (𝑎 𝑗𝑡 |𝑠𝑡 ) | |𝜋 𝑗 (𝑎
𝑗
𝑡 |𝑠𝑡 ))

− KL(𝑞(𝑎− 𝑗
𝑡 |𝑠𝑡 ) | |𝜋𝜋𝜋− 𝑗 (𝑎− 𝑗

𝑡 |𝑠𝑡 ))
����𝑞]

=E𝑎𝑎𝑎0,𝑠0∼𝑞
[
𝑄

𝑗
𝜌 (𝑠0,𝑎𝑎𝑎0; 𝜌) − KL(𝜌 𝑗 (𝑎 𝑗

0
|𝑠0) | |𝜋 𝑗 (𝑎 𝑗

0
|𝑠0))

���𝑞]
=E𝑠0∼𝑞

−KL

(
𝜌 𝑗 (𝑎 𝑗

0
|𝑠0)

 𝜋 𝑗 (𝑎 𝑗
0
|𝑠0) exp(E

𝑎
− 𝑗

0
∼𝑞 [𝑄

𝑗
𝜌 (𝑠0,𝑎𝑎𝑎0; 𝜌)])

E
𝑎
𝑗

0
∼𝜋 𝑗 ( · |𝑠0 )

[
exp(E

𝑎
− 𝑗

0
∼𝑞 [𝑄

𝑗
𝜌 (𝑠0,𝑎𝑎𝑎0; 𝜌)])

] )����𝑞
+ E𝑠0,𝑎𝑎𝑎0∼𝑞

[
𝑄

𝑗
𝜌 (𝑠0,𝑎𝑎𝑎0; 𝜌)

]

From the non-negativity of KL divergence, the optimal opponent

model of agent 𝑗 is

𝜌∗𝑗 (𝑎
𝑗

0
|𝑠0) =

𝜋 𝑗 (𝑎 𝑗
0
|𝑠0) exp(E

𝑎
− 𝑗

0
∼𝑞 [𝑄

𝑗
𝜌 (𝑠0,𝑎𝑎𝑎0; 𝜌)])

E
𝑎
𝑗

0
∼𝜋 𝑗 ( · |𝑠0 )

[
exp(E

𝑎
− 𝑗

0
∼𝑞 [𝑄

𝑗
𝜌 (𝑠0,𝑎𝑎𝑎0; 𝜌)])

]
□
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