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Abstract
Recent literature has witnessed a rising interest in learning Nash

equilibrium with a guarantee of last-iterate convergence. In this

paper, we introduce a novel approach called Regularized Follow-

the-Regularized-Leader (RegFTRL), which is an efficient variant of

FTRL enriched with an adaptive regularization, for the purpose of

learning equilibria in two-player zero-sum games. In the context of

normal-form games (NFGs), our proposed RegFTRL algorithm ex-

hibits desirable property of last-iterate linear convergence towards

an approximated equilibrium, and converges to an exact Nash equi-

librium through adaptive adjustments of the regularization. More-

over, we extend our method to extensive-form games (EFGs) and

propose FollowMu, a practical implementation of RegFTRL with

a neural network as the function approximator, for model-free

learning in sequential non-stationary environments. Finally, empir-

ical results substantiate the theoretical properties of RegFTRL, and

demonstrate that FollowMu can achieve favorable performance in

EFGs.

CCS Concepts
• Computing methodologies→ Reinforcement learning; Reg-
ularization.
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1 Introduction
Online learning has a rich history that is inextricably intertwined

with the advancement of game theory, convex optimization, andma-

chine learning. One of the earliest manifestations of online learning

can be attributed to the proposal of fictitious play [10] as a method

for solving two-player zero-sum games. Ensuing result [39] has

revealed that iteratively computing a best response to each other’s

history of play in (zero-sum) matrix games leads to convergence

to the set of Nash equilibria. This kind of learning paradigm can

be linked to the notion of no-regret learning [13], which shares

a common historical thread with game theory that dates back to

Blackwell’s approachability theorem [4, 8].

It is folklore that the time-average policies of no-regret algo-

rithms in self-play converge to a Nash equilibrium in two-player

zero-sum games (called average-iterate convergence) [13]. A plethora

of online learning algorithms, including the celebrated Online

Mirror Descent (OMD) [50] and Follow-the-Regularized-Leader

(FTRL) [5], ensure that the worst case regret is upper bounded sub-

linearly with learning iterations [43], thus allowing for a global

on-average convergence to the Nash equilibrium over time. A myr-

iad of studies have significantly expanded the applicability of the

no-regret theorem to a broader class of settings, covering extensive-

form games (EFGs) [24, 55],Markov games (MGs) [6, 46], differential

games (i.e. smooth games) [47], and auctions [16].

However, the average-iterate convergence characteristic poses

significant challenges in game theory and its practical applications,

especially when representing policies using deep networks [22]. In

most game settings, averaging neural network weights does not

directly correspond to an average of the policies represented by

those networks [14, 21]. To mimic agents’ average behaviors, it is

often required to maintain an additional reservoir buffer, typically

hundreds or even thousands of times the size of the game, to store

past transition data [22] or historical network parameters [27],

leading to extremely high memory demands. Moreover, the average

policy cannot be represented precisely due to the inherent neural

network approximation error.
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Figure 1: Learning dynamics (black arrows) and second-order
dynamics (blue arrows) in the (A) Hamiltonian game, and (B)
potential game.

Accordingly, it is imperative to develop no-regret algorithms

that converge to (approximate) Nash equilibrium without averag-

ing (called last-iterate convergence). However, previous research
has demonstrated that the standard no-regret algorithms can lead

to cyclic behaviors [36, 54] or even chaotic behaviors [40] of the

real-time policy. As shown in the top left side of Figure 1, in a
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Hamiltonian game
1
, the learning dynamics of the standard no-

regret algorithms will cycle around the equilibrium point due to

the conflict between the optimization objectives, resulting in con-

vergence failure. In recent literature, methods based on optimistic

gradients [15, 51], predictive updates [52], and opponent learning

awareness [18] shed lights on how to break the cyclic behaviors

by predicting opponents’ next moves. Algorithmically, these meth-

ods can be considered variations of the optimistic/extra-gradient

methods, where the gradient dynamics are modified through the in-

troduction of approximate second-order information [41]. The right

plot at the top of Figure 1 shows the convergence direction of the

second-order gradient dynamics in the Hamiltonian cycle towards

the equilibrium point, which highlights the effectiveness of intro-

ducing (approximate) second-order information when jumping out

of cycles. However, in different types of games, the second-order

information may have different effects on the learning dynamics.

As depicted in the bottom plots of Figure 1, in some potential games,

the use of second-order information can impede convergence, par-

ticularly when the real-time policy exhibits chaotic behavior.

Contributions: The contributions of this paper aremainly three-

fold: (1) instead of using the approximate second-order information,

we introduce an extra regularization, independent of the game

types, into the underlying game to enhance its potential compo-

nent and thus establish general-case last-iterate convergence; (2) by

incorporating regularization, we present a variant of FTRL called

Regularized FTRL (RegFTRL) that is able to converge at an ex-

ponentially fast rate in NFGs without either the optimistic update

or the uniqueness assumptions, and investigate two approaches,

annealing and adaption approaches, to build algorithms that con-

verge to an exact Nash equilibrium; and (3) we extend RegFTRL to

EFGs and propose a model-free reinforcement learning algorithm,

FollowMu, as a practical implementation of RegFTRL, and validate

its performance in Kuhn & Leduc and Phantom Tic-Tac-Toe.

2 Related Work
Research in the realm of last-iterate convergence can be roughly

divided into two lines: the optimistic update paradigm and the

regularization technique.

In the optimistic update approach, previous studies [14, 30, 34,

38] have investigated the last-iterate convergence in simple uncon-

strained cases, which are not directly applicable to the NFG/EFG

setting. In cases where a unique Nash equilibrium is assumed,

Daskalakis and Panageas [15] and Wei et al. [51] extend the scope

of research by providing last-iterate convergence guarantees for

Optimistic Multiplicative Weights Update (OMWU) (corresponds to

Optimistic FTRL with an entropy regularizer) in NFGs, while Wei

et al. [51] further prove the convergence of Optimistic Gradient

Descent/Ascent (OGDA) (corresponds to optimistic OMD with a 𝐿2
regularizer) without the uniqueness assumption. In the context of

EFGs, the pioneering work by Farina et al. [17] empirically demon-

strates the last-iterate convergence of OMWU, while Lee et al. [28]

subsequently establish theoretical proofs with the uniqueness as-

sumption. Recently, Cai et al. [11], Gorbunov et al. [20] extend the

1
See Appendix C for discussions on Hamiltonian and potential games. In brief, an

NFG is potential if there is a single potential function 𝑔 such that𝑉
𝜋1,𝜋2 − 𝑉�̂�1,𝜋2 =

−𝑔 (𝜋1, 𝜋2 ) + 𝑔 (𝜋1, 𝜋2 ) for all 𝜋1, 𝜋1, 𝜋2
.

convergence properties of OGDA to monotone games, which in-

clude many common classes of games, such as zero-sum polymatrix

games and concave-convex games. However, the optimistic update

is not flawless. From a theoretical standpoint, OMWU still lacks an

explicit last-iterate convergence rate, even in NFGs, without the re-

liance on uniqueness assumption [28, 51]. Additionally, the analysis

of OMWU in EFGs is built over the sequence-form strategy [28, 51],

which exhibits limitations in scaling to large games. In practical

terms,the implementation of the optimistic update approach often

necessitates the computation of multiple strategies at each itera-

tion. Furthermore, OGDA has high per-iteration complexity due

to the costly projection operations at each iteration, which adds

to the computational burden. In contrast, our proposed approach,

RegFTRL, offers distinct advantages. It obviates the requirement

for the uniqueness condition and emphasizes the behavior-form

strategy, making it more compatible with reinforcement learning

and readily adaptable to large-scale games.

Within the realm of learning dynamics, the regularization tech-

nique has emerged as pivotal tools for accelerating convergence [1,

2, 37, 44]. Pérolat et al. [37] conduct a comprehensive analysis

of the impact of entropy regularization on continuous-time dy-

namics, and propose a reward transformation method to achieve

linear convergence in EFGs using counterfactual values. However,

it is imperative to note that their theoretical findings pertaining to

continuous-time dynamics do not inherently extend to the desired

discrete-time results. Moreover, the use of counterfactual values

presents scalability challenges in large-scale settings [32]. Further-

more, their reward transformation technique can lead to estimation

issues due to the arbitrarily cumulative sum. Wang et al. [49] show

that the GDA algorithm, with a decreasing learning rate, achieves

last-iterate convergence in stronglymonotone games. In the context

of monotone games, the establishment of strong monotonicity is

achievable through the incorporation of a strongly convex regular-

izer. Similar to our work, Magnetic Mirror Descent (MMD) [44] and

FTRL with Slingshot Perturbation (FTRL-SP) [1] investigate the in-

fluences of general-case regularization on last-iterate convergence,

and both provide the linear convergence rate to the regularized

equilibrium, albeit FTRL-SP with a more strict restriction on the

learning rate. However, MMD exclusively achieves convergence to-

wards an approximated equilibrium in NFGs, while the concurrent

work FTRL-SP provides a convergence rate to an exact Nash equi-

librium with the 𝐿2 regularizer in monotone games. Furthermore,

their analysis could not encompass the behavior-form EFGs consid-

ered in our paper. Due to the uniqueness of the quantal response

equilibrium (QRE), certain endeavors have attempted to combine

optimistic update with additional entropy-regularization to remove

the uniqueness assumption associated with OMWU [12, 31], but

these approaches still inherit limitations of the optimistic update

paradigm.

Compared with the aforementioned related works that either

focus on matrix games [2, 44], only consider a special regulariza-

tion [2], or assume continuous-time feedback [37], we go one step

further and prove that RegFTRL converges to an exact Nash equilib-

rium via general-case regularization in NFGs. Additionally, through

empirical observations, we substantiate that RegFTRL equipped

with alternative regularization, consistently exhibits last-iterate

convergence in behavior-form EFGs.
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3 Preliminaries
3.1 Normal-Form Game
NFGs is representing scenarios where only one stage exists and

all the players act simultaneously. Each player 𝑖 selects action

𝑎𝑖 ∈ A, and then player 1 receives a reward 𝑟 (𝑎1, 𝑎2) ∈ [0, 1]
while player 2 receives a reward −𝑟 (𝑎1, 𝑎2). For a given policy

𝜋 = (𝜋1, 𝜋2) ∈ ∏
2

𝑖=1 ΔA , the Q-function for player 1 is defined

as 𝑄𝜋 (𝑎1) = E𝑎2∼𝜋2 [𝑟 (𝑎1, 𝑎2)], and the value function as 𝑉𝜋 =

E𝑎1∼𝜋1 [𝑄𝜋 (𝑎1)]. The value functions of player 2 are the negative
values of player 1.

FTRL (See Appendix C for a more detailed introduction) is an

intuitive algorithm: for player 𝑖 , at each time step it maximizes

the sum of the past returns 𝑦𝑖𝑡 =
∫ 𝑡

0
(2 · 11=𝑖 − 1)𝑄𝜋𝑘𝑑𝑘 with a

regularization 𝜓 : ΔA → R, i.e., 𝜋𝑖
𝑡+1 = argmax𝑝∈ΔA [𝜂⟨𝑝,𝑦

𝑖
𝑡 ⟩ −

𝜓 (𝑝)] where ⟨·, ·⟩ means inner product and 𝜂 > 0 is the learning

rate.

A Nash equilibrium is a widely used solution concept for games.

In a Nash equilibrium, no player can improve his/her expected

utility by deviating from his/her specified strategy. In two-player

zero-sum normal-form games, a strategy profile 𝜋∗ = (𝜋∗
1
, 𝜋∗

2
) is

called a Nash equilibrium if for any𝜋1 ∈ Δ(𝐴1) and 𝜋2 ∈ Δ(𝐴2),

𝑣
𝜋∗
1
,𝜋2

1
≥ 𝑣

𝜋∗
1
,𝜋∗

2

1
≥ 𝑣

𝜋1,𝜋
∗
2

1

We denote the set of Nash equilibria by Π∗. An 𝜖-Nash equilib-

rium (𝜋1, 𝜋2) is and approximation of a Nash equilibrium, which

satisfies the following inequality:

max

𝜋1∈ΔA
𝑉
𝜋1,𝜋2

+ max

𝜋2∈ΔA
𝑉
𝜋1,𝜋2

≤ 𝜖

3.2 Extensive-Form Games
EFGs can be viewed as an extension of NFGs. The representation

of a two-player zero-sum EFG ⟨N ,S,A,I,P, {𝑟ℎ}𝐻
ℎ=1
⟩ is based

on a game tree of depth 𝐻 , modeling the sequential interactions

involving each player 𝑖 ∈ N = {1, 2} and a chance player 𝑐 . At each
history 𝑠 ∈ S at time ℎ ∈ [𝐻 ], corresponding to a node at level ℎ in

the finite rooted game tree, the player function P(𝑠) ↦→ 𝑖 ∈ N ∪{𝑐}
determines a player or chance to play an action 𝑎 ∈ A(𝑠). As a
result, player 1 will receive a reward 𝑟ℎ (𝑠, 𝑎) ∈ [0, 1] (and player 2

will receive a reward −𝑟ℎ (𝑠, 𝑎)), and the history will transition to

its successor history 𝑠′ = 𝑠𝑎 at time ℎ + 1. We denote 𝑠′ ⊏ 𝑠 if 𝑠′

is led from 𝑠 . Due to the imperfect-information, at each history 𝑠 ,

only an information state 𝐼 ∈ I can be observed, where histories

𝑠 ∈ 𝐼 are indistinguishable for the current player. We use 𝐼 (𝑠) to
denote the information state 𝐼 corresponding to a history 𝑠 .

A behavior-form strategy 𝜋 (𝑎 |𝐼 ) is defined on each infor-

mation state: 𝜋 (·|𝐼 ) ↦→ ΔA(𝐼 ) (Δ is a probability simplex, and Δ◦

means the interior of Δ). We further denote the restriction of 𝜋

over I𝑖 ⊆ I by 𝜋𝑖 , and thus 𝜋 = (𝜋𝑖 , 𝜋−𝑖 ). If all players fol-

low 𝜋 , the reach probability of a history 𝑠 can be computed by

𝜌𝜋 (𝑠) = ∏
𝑠′𝑎⊏𝑠 𝜋 (𝑎 |𝐼 (𝑠′)). Thus we have:

𝑟ℎ (𝐼 , 𝑎) =
∑︁
𝑠∈𝐼 ,𝑎

𝜌𝜋 (𝑠, 𝑎)𝑟ℎ (𝑠, 𝑎)/
∑︁
𝑠∈𝐼

𝜌𝜋 (𝑠), (1)

where 𝜌𝜋 (𝑠, 𝑎) = 𝜌𝜋 (𝑠)𝜋 (𝑎 |𝐼 (𝑠)). For player 1, the value function
is defined as 𝑉ℎ

𝜋 (𝐼 ) = E
[ ∑𝐻

ℎ′=ℎ [𝑟
ℎ′ (𝐼ℎ′ , 𝑎ℎ′ )]

]
, and Q-function as

𝑄ℎ
𝜋 (𝐼 , 𝑎) = 𝑟ℎ (𝐼 , 𝑎) + E𝐼 ′=𝐼 (ℎ𝑎),ℎ∈𝐼 [𝑉ℎ+1

𝜋 (𝐼 ′)]. The value functions
of player 2 are the negative one of player 1.

3.3 Other Notations
For a strictly convex and continuously differentiable function 𝜓 ,

we denote the Bregman divergence as 𝐷𝜓 (𝑝, 𝑞) = 𝜓 (𝑝) −𝜓 (𝑞) −
⟨∇𝜓 (𝑞), 𝑝 − 𝑞⟩, and the Kullback-Leibler divergence (i.e., Bregman

divergence with𝜓 (𝑝) = ∑
𝑎 𝑝 (𝑎) ln𝑝 (𝑎)) as 𝐷KL. Then, we say that

𝜓 is 𝜆-strongly convex with respect to ∥·∥ if 𝐷𝜓 (𝑝, 𝑞) ≥ 𝜆
2
∥𝑝 − 𝑞∥2,

and 𝑔 is 𝜆-strongly convex relative to𝜓 if ⟨∇𝑔(𝑝) − ∇𝑔(𝑞), 𝑝 − 𝑞⟩ ≥
𝜆⟨∇𝜓 (𝑝) − ∇𝜓 (𝑞), 𝑝 − 𝑞⟩. Note that 𝜓 and 𝐷𝜓 (·, 𝑞) is 1-strongly
convex relative to𝜓 .

4 Stabilize the Learning Dynamics via
Regularization

This section utilizes the regularization to stabilize the learning

dynamics of FTRL in general games, and presents a comprehensive

study of its last-iterate convergence in NFGs. All proofs of our

theoretical results are given in Appendix A.

4.1 Last-Iterate Convergence in NFGs
Since the learning dynamics of FTRL will converge in potential

games [23] but cycle in Hamiltonian games [7, 33], an intuitive

idea to stabilize the FTRL dynamics is to add an extra potential

component to the underlying game, i.e., to enhance the potential

component of the original game. In this subsection, we present this

potential enhancementmethod in NFGs.With an arbitrary potential

function 𝑔, we consider the potential-enhancement optimization

problem:

max

𝜋1∈ΔA
min

𝜋2∈ΔA
𝑉𝜋1,𝜋2 − 𝜏𝑔(𝜋1, 𝜋2), (2)

where 𝜏 > 0 is a weight parameter to control the strength of the

additional potential component, and thus the original game can

be obtained by setting 𝜏 = 0. We further consider a decentralized

potential function, i.e.,𝑔(𝜋1, 𝜋2) = 𝑔1 (𝜋1)−𝑔2 (𝜋2), in terms of ease-

of-use. It can be found that problem (2) is a generalization of entropy-

regularized problem by setting 𝑔𝑖 (𝑝) = ⟨𝑝, ln𝑝⟩. Inspired by this,

we develop RegFTRL by incorporating the additional potential

function into FTRL:

𝜋𝑖𝑡 = argmax

𝑝∈Δ𝐴

[𝜂⟨𝑝,𝑦𝑖𝑡 ⟩ −𝜓 (𝑝)], (3)

𝑦𝑖𝑡 (𝑎) =
∫ 𝑡

0

[
𝛿𝑖𝑄𝜋𝑘 (𝑎) − 𝜏 [∇𝑔𝑖 (𝜋𝑖𝑘 )]𝑎

]
𝑑𝑘, 𝛿𝑖 = 2 · 11=𝑖 − 1,

where 𝜂 > 0 is the learning rate, and the regularization function𝜓 :

ΔA → R is strictly convex and continuously differentiable on ΔA .
Note that

∫ 𝑡

0

[
𝛿𝑖𝑄𝜋𝑘 (𝑎) − 𝜏 [∇𝑔𝑖 (𝜋𝑖

𝑘
)]𝑎

]
𝑑𝑘 =

∑𝑡−1
𝑘=0

[
𝛿𝑖𝑄𝜋𝑘 (𝑎) −

𝜏 [∇𝑔𝑖 (𝜋𝑖
𝑘
)]𝑎

]
under discrete-time settings, and FTRL can be ob-

tained by setting 𝜏 = 0. It can be found that the learning dynamics

of RegFTRL in the original game is equivalent with the FTRL dy-

namics in the potential-enhancement optimization problem (2). In

RegFTRL, the extra potential term is expected to force the dynamics

to escape from cycles. Figure 2 shows this insight visually, which

describes RegFTRL dynamics in a simple Hamiltonian game of bi-

ased Rock-Paper-Scissors. Here we take 𝑔𝑖 (𝜋𝑖 ) = 𝐷KL (𝜇𝑖 , 𝜋𝑖 ) (𝜇 is
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Figure 2: The vector fields of RegFTRL with varying weights
in biased Rock-Paper-Scissors.

an uniform strategy) as an example. As can be seen in Figure 2 (a),

the FTRL dynamics cycle and fail to converge to the interior Nash

equilibrium, while the RegFTRL dynamics with only the potential

term (i.e., 𝑦𝑖𝑡 = −
∫ 𝑡

0
∇𝑔𝑖 (𝜋𝑖

𝑘
)𝑑𝑘) directly converge to a stationary

point in Figure 2 (d), although this stationary point is independent

of the original game. However, with some small weight param-

eters, RegFTRL flows towards a stationary point near the Nash

equilibrium as shown in Figure 2 (b) and (c).

We now analyze the theoretical properties of RegFTRL. Before

that, we make some necessary assumptions.

Assumption 1 (Well Defined). Assume𝜓 is 1-strongly convex
with respect to ∥·∥ and 𝜋𝑡 ∈ B = B1 × B2 ⊆ ∏

2

𝑖=1 Δ
◦
A , where

{𝜋𝑡 }𝑡≥0 is generated by RegFTRL.

Assumption 2. For 𝑖 ∈ {1, 2}, assume 𝑔𝑖 is continuously differen-
tiable and 𝜆-strongly convex relative to𝜓 over Δ◦A . This also implies
that ∇𝑔𝑖 is 𝐿-smooth over B, i.e., ∥∇𝑔𝑖 (𝑝) − ∇𝑔𝑖 (𝑞)∥ ≤ 𝐿∥𝑝 − 𝑞∥ for
∀𝑝, 𝑞 ∈ B. Furthermore, we assume 𝑔𝑖 has an interior minimum point
𝜇𝑖 ∈ B𝑖 , and re-denote 𝑔𝑖 as 𝑔𝑖𝜇 for the sake of clarity. We call this
minimum point 𝜇 as reference strategy.

Assumption 3 (Regularized Eqilibrium). Assume 𝜋𝜇 ∈ B is
the interior stationary point of continuous-time RegFTRL dynamics
with𝜓 (𝑝) = ⟨𝑝, ln𝑝⟩ and 𝑔𝜇 .

Assumption 1 is to ensure that 𝜋𝑡 generated by RegFTRL is well

defined. This assumption is also required in MMD [44]. Assump-

tion 2 allows RegFTRL to get fast convergence via leveraging the

curvature of 𝑔𝜇 , and then the potential enhancement method ac-

tually is the regularization technique. Assumption 3 is guaranteed

when 𝑔𝑖𝜇 (𝜋) = 𝐷KL (𝜇𝑖 , 𝜋𝑖 ) or 𝑔𝑖𝜇 (𝜋) = 𝐷KL (𝜋𝑖 , 𝜇𝑖 ) (more details

refer to Appendix A). Under these assumptions, we first present

the properties of the regularized equilibrium, and then give the

linear convergence guarantees of RegFTRL without the uniqueness

condition in both continuous-time and discrete-time settings.

Theorem 1. Under Assumption 1∼3, the regularized equilibrium
𝜋𝜇 ∈ B satisfies: (1) 𝜋𝜇 is unique; and (2) 𝜋𝜇 is an 𝜖-Nash equilibrium,
where 𝜖 = E(𝜋𝜇 ) = 𝜏

∑
2

𝑖=1

(
max𝑎 [∇𝑔𝑖 (𝜋𝑖𝜇 )]𝑎 − ⟨𝜋𝑖𝜇 ,∇𝑔𝑖 (𝜋𝑖𝜇 )⟩

)
≥ 0.

Theorem 2. Given Assumption 1∼3, the continuous-time 𝜋𝑡
generated by continuous-time version of RegFTRL dynamics satisfies:

𝐷𝜓 (𝜋𝜇 , 𝜋𝑡 ) ≤ 𝐷𝜓 (𝜋𝜇 , 𝜋0) exp(−𝜂𝜏𝜆 · 𝑡),
while the discrete-time 𝜋𝑡 generated by discrete-time version of
RegFTRL dynamics satisfies:

𝐷𝜓 (𝜋𝜇 , 𝜋𝑡 ) ≤ 𝐷𝜓 (𝜋𝜇 , 𝜋0) (1 + 𝜂𝜏𝜆)−𝑡 , and

E(𝜋𝑡 ) ≤ E(𝜋𝜇 ) + 2
√︃
𝐷𝜓 (𝜋𝜇 , 𝜋0) (1 + 𝜂𝜏𝜆)−𝑡/2,

if𝜓 (𝑝) = ⟨𝑝, ln𝑝⟩ and 0 < 𝜂 ≤ 𝜏𝜆

�̃�2
, where �̃� = max{𝜏𝐿, 1}.

Remark 1. Theorem 1 implies that 𝜋𝜇 is a Nash equilibrium if
E(𝜋𝜇 ) = 0, which means 𝜋𝜇 = 𝜇. Additionally, by combining Theo-
rem 1 and Theorem 2, it can be also found that the weight parameter
𝜏 introduces a trade-off between the speed of convergence and the
bias in the Nash equilibrium. These observations inspire us to develop
the two approaches mentioned in Section 4.2 to reach an exact Nash
equilibrium.

Remark 2. Take the quantal response equilibrium (QRE) as an
example, Theorem 2 implies that the discrete-time RegFTRL is guaran-
teed to find an 𝜖-QRE in O( 1

ln(1+𝜂𝜏 ) ln
1

𝜖 ) iterations. Besides, FTRL-
SP [1] and entropy-regularized OMWU [12] both require
O( 1

− ln(1−𝜂𝜏/2) ln
1

𝜖 ) iterations.

4.2 Convergence to an Exact Nash Equilibrium
We next introduce two approaches to find an exact Nash equilib-

rium. Drawing insights from Theorem 1 , the distance between the

regularized equilibrium 𝜋𝜇 and the set of Nash equilibria Π∗ can
be effectively controlled through the manipulation of the weight

parameter 𝜏 . Therefore, we first propose the annealing approach
that gradually decreases weight parameter 𝜏 in order to diminish

the bias associated with the equilibrium. Nonetheless, it is worth

noting that, as implied by Theorem 2, the speed of convergence

might be adversely affected as the weight parameter 𝜏 undergoes

reduction.

Another one is the adaption approach, similar to the direct

convergence method [37]. As indicated in Remark 1, a Nash equilib-

rium can be achieved when 𝜋𝜇 = 𝜇, implying that the regularized

equilibrium will exhibit closer proximity to Π∗ if the reference

strategy 𝜇 approximates a Nash equilibrium. Therefore, we set ref-

erence strategy 𝜇 to 𝜋𝑡 every 𝑁 iterations, with the expectation

that 𝜋𝑡 will progressively converge to a Nash equilibrium. Indeed,

with 𝜇𝑘 denoting the 𝑘-th reference strategy and a sufficienty large

value for 𝑁 , 𝜋𝑡 converges to 𝜋𝜇𝑘 from Theorem 2. Subsequently,

the subsequent reference strategy 𝜇𝑘+1 is adjusted to coincide with

𝜋𝜇𝑘 . Intuitively, as 𝑘 increases, 𝜋𝜇𝑘 coincides with 𝜇𝑘 , consequently

driving the reference strategies towards convergence with a Nash

equilibrium in the underlying game. This intuition is formally sub-

stantiated by the following theorem. It is important to highlight

that, unlike the annealing approach, the adaption approach obviates
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the necessity for a diminishing weight parameter 𝜏 , thus preserving

a consistent convergence rate.

Theorem 3. If 𝑔𝜇 (𝜋) = 𝐷𝜙 (𝜋, 𝜇) and 𝑔𝜇 (𝜋) = 𝐷KL (𝜇, 𝜋), then
for any interior point 𝜇0, the sequence of reference strategies {𝜇𝑘 }𝑘≥0
converges to a Nash equilibrium of the original game.

5 FollowMu: A Practical Implementation of
RegFTRL

Motivated by the effect of RegFTRL in NFGs, this section generalizes

RegFTRL to EFGs, and proposes a novel model-free reinforcement

learning algorithm, named FollowMu (Follow the reference strat-

egy 𝝁), which combines RegFTRL with function approximation

techniques. In EFGs, the RegFTRL policy updated rule can be writ-

ten as:

𝜋𝑡 (·|𝐼 ) = argmax

𝑝∈ΔA(𝐼 )
[𝜂⟨𝑝,𝑦ℎ,𝜏𝑡 (𝐼 , ·)⟩ −𝜓 (𝑝)], (4)

𝑦
ℎ,𝜏
𝑡 (𝐼 , 𝑎) =

𝑡−1∑︁
𝑘=0

[
𝛿 (𝐼 )𝑄ℎ,𝜏

𝑘
(𝐼 , 𝑎) − 𝜏 [∇𝑔𝐼𝜇 (𝜋𝑘 )]𝑎

]
,

where 𝛿 (𝐼 ) = 2 · 1
1=P(I) − 1, 𝑔𝐼𝜇 (𝜋𝑘 ) := 𝑔𝜇 (𝜋𝑘 (·|𝐼 )), and the value

functions are updated as follows:


𝑄0 = 0,𝑉0 (𝐼 ) = −𝛿 (𝐼 )𝜏 ⟨𝜋0 (·|𝐼 ),∇𝑔𝐼𝜇 (𝜋0)⟩
𝑄
ℎ,𝜏
𝑡 (𝐼 , 𝑎) = 𝑟ℎ (𝐼 , 𝑎) + E𝐼 ′=𝐼 (ℎ𝑎),ℎ∈𝐼 [𝑉ℎ+1,𝜏

𝑡−1 (𝐼
′)]

𝑉
ℎ,𝜏
𝑡 (𝐼 ) = (1 − 𝛼𝑡 )𝑉

ℎ,𝜏
𝑡−1 (𝐼 )

+𝛼𝑡
∑
𝑎 𝜋𝑡 (𝑎 |𝐼 )

[
𝑄
ℎ,𝜏
𝑡 (𝐼 , 𝑎) − 𝛿 (𝐼 )𝜏 · ∇[𝑔𝐼𝜇 (𝜋𝑡 )]𝑎

]
.

(5)

It can be found that RegFTRL is compatible with the actor-critic

framework, wherein the actor is responsible for policy updates

through the utilization of RegFTRL (as shown in Eq. (3)), while the

critic undertakes the task of value function updates on a relatively

slower timescale.

𝜋𝑡+1 (𝑎 |𝐼 ) ∝ exp(𝑧𝑡 (𝐼 , 𝑎)),
𝑧𝑡 (𝐼 , 𝑎) ≃ 𝐴(𝐼 , 𝑎;𝜃𝑡 ) −𝑉 (𝐼 ;𝜔𝑡 ). (6)

Let 𝐴(𝐼 , 𝑎;𝜃𝑡 ) be the actor network parameterized by 𝜃𝑡 , and

𝑉 (𝐼 ;𝜔𝑡 ) be the critic network parameterized by 𝜔𝑡 . At time step

𝑡 , the critic network 𝑉 (𝐼 ;𝜔𝑡 ) is trained to approximate the value

function 𝑉𝜋𝑡 (𝐼 ) of the real-time strategy, and the actor network

𝐴(𝐼 , 𝑎;𝜃𝑡 ) is trained to fit the cumulative advantage function of past

iterations plus the Q-function of the current-iterate strategy (with

the regularized term):

𝐴(𝐼 , 𝑎;𝜃𝑡 )

≃
𝑡−1∑︁
𝑘=0

[
𝑄𝜋𝑘 (𝐼 , 𝑎) −𝑉𝜋𝑘 (𝐼 ) − 𝜏 log

𝜋𝑘 (𝑎 |𝐼 )
𝜇 (𝑎 |𝐼 )

]
+𝑄𝜋𝑡 (𝐼 , 𝑎) − 𝜏 log

𝜋𝑡 (𝑎 |𝐼 )
𝜇 (𝑎 |𝐼 )

≃ [𝐴(𝐼 , 𝑎;𝜃𝑡−1) −𝑉 (𝐼 ;𝜔𝑡−1)] +𝐺 − 𝜏 log
𝜋𝑡 (𝑎 |𝐼 )
𝜇 (𝑎 |𝐼 ) , (7)

where 𝐺 is the empirical estimator of 𝑄𝜋𝑡 (𝐼 , 𝑎). Then, if we take𝜓
to be the entropy regularizer, the next-iterate strategy can be com-

puted by: Here we employ the advantage function𝑄𝜋𝑡 (𝐼 , 𝑎)−𝑉𝜋𝑡 (𝐼 ),
as a substitution for the Q-function 𝑄𝜋𝑡 (𝐼 , 𝑎), for the sake of en-
hancing numerical stability and robustness. Despite this alteration,

the strategy update formulation in Eq.(6) remains equivalent to

the updated strategy employed in RegFTRL, attributed to the shift-

invariant nature inherent in the softmax function. Meanwhile, the

reference strategy will be updated 𝜇 ← 𝜋𝑡 every 𝑁 iterations.

Algorithm 1 FollowMu

1: Initialize: 𝜋0 as uniform, 𝜃0, and 𝜔0 arbitrarily;

2: for 𝑡 = 0, 1, . . . do
3: if 𝑡 mod 𝑁 = 0 then
4: 𝜇 ← 𝜋𝑡
5: end if
6: Collect replay buffer B𝑡 ∼ 𝜋𝑡
7: for 𝑘 = 0, 1, . . . do
8: Fetch a mini-batch of samples D from B𝑡
9: for (𝐼 , 𝑎) ∈ D do
10: 𝐺 ← Return(𝐼 , 𝑎,D)
11: if 𝑡 = 0 then
12: 𝐴tmp ← 0

13: else
14: 𝐴tmp

15: ← min {ℓ,max {0, 𝐴(𝐼 , 𝑎;𝜃𝑡−1) −𝑉 (𝐼 ;𝜔𝑡−1)}}
16: end if
17: 𝐴target ← 𝐴tmp +𝐺 − 𝜏 log 𝜋𝑡 (𝑎 |𝐼 )

𝜇 (𝑎 |𝐼 )
18: 𝜃𝑡 ← UpdateActor(𝐼 , 𝑎, 𝐴target)
19: end for
20: for 𝐼 ∈ D do
21: 𝐺 ← Return(𝐼 ,D)
22: 𝜔𝑡 ← UpdateCritic(𝐼 ,𝐺)
23: end for
24: end for
25: 𝜋𝑡+1 (𝑎 |𝐼 ) ∝ exp(𝐴(𝐼 , 𝑎;𝜃𝑡 ) −𝑉 (𝐼 ;𝜔𝑡 ))
26: end for

We summarize our implementation of FollowMu in Algorithm 1,

where the return 𝐺 is estimated by the Monte Carlo method, and

the loss of actor and critic network are computed by MSE loss. Note

that we use the clipped cumulative advantage function in practice:

𝐴(𝐼 , 𝑎;𝜃𝑡 ) =min

{
ℓ,max

{
0, 𝐴(𝐼 , 𝑎;𝜃𝑡−1) −𝑉 (𝐼 ;𝜔𝑡−1)

}}
+𝐺 − 𝜏 log 𝜋𝑡 (𝑎 |𝐼 )

𝜇 (𝑎 |𝐼 ) ,

where the clipping operator is employed to ensure the stability of

the training process, and ℓ > 0 controls the strength of clipping.

The clipping operator min{ℓ, 𝑥} serves to effectively limit the mag-

nitude of the cumulative advantage function, thereby preventing

it from becoming excessively large and leading to performance

collapse. Conversely, when dealing with cumulative values that

are too small, we employ the positive clipping operator max{0, 𝑥}
instead ofmax{−ℓ, 𝑥} to truncate these values. In fact, this clipping

operation is identical to the one used in CFR+ [45], which is a sim-

ple yet highly effective technique for improving performance [9].
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Figure 3: M-NE & Random Game: Exploitability vs. Iterations
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Figure 4: Kuhn & Leduc Poker: Exploitability vs. Iterations

Additionally, when collecting the buffer, the current policy will be

perturbed by a small 𝜖 probability.

6 Experiments
In this section, we validate our methods on NFGs and EFGs utilizing

the exploitability metric (i.e., E(𝜋)) under two experimental set-

tings, i.e., the full-information feedback setting and the neural-based

sample setting. In the full-information feedback setting, we evalu-

ate the performance of RegFTRL as a Nash equilibrium solver, em-

ploying the annealing approach and adaption approach. Note that

the potential function 𝑔𝜇 in RegFTRL is set to 𝑔𝜇 (𝜋) = 𝐷KL (𝜋, 𝜇).
In addition to this, we also consider moment projection 𝑔𝜇 (𝜋) =
𝐷KL (𝜇, 𝜋) and 𝐿2 norm 𝑔𝜇 (𝜋) = 1

2
∥𝜋 − 𝜇∥2

2
for examining the im-

pact brought by different regularization. We abbreviate RegFTRL

equipped with 𝑔𝜇 (𝜋) = 𝐷KL (𝜇, 𝜋) as M-RegFTRL, and RegFTRL

with 𝑔𝜇 (𝜋) = 1

2
∥𝜋 − 𝜇∥2

2
as 2-RegFTRL. In neural-based sample

settings, we assess the efficacy of FollowMu as a deep multi-agent

reinforcement learning algorithm through self-play. Further details

about experimental settings are included in Appendix B.

6.1 Full-Information Feedback Setting
In this case, we compare the performances of RegFTRL-A (abbr.

RegFTRL with annealing approach), RegFTRL-D (abbr. RegFTRL

with adaption approach) with baselines: (i) FTRL, (ii) O-FTRL (abbr.

optimistic FTRL), (iii) CFR [55], (iv)MMD-A (abbr. MMD with an-

nealing weight), and (v) MMD-M (abbr. MMDwith moving magnet).

For NFGs, we focus on two games: Multiple Nash Equilibria (abbr.

M-Ne) and a random utility game with 50 actions. M-Ne, as intro-

duced in prior work [51], is characterized by a set of Nash equilibria.

For the random utility game, the 50×50 payoffmatrix is drawn from

a standard Gaussian distribution in an i.i.d. manner. For EFGs, we

consider games implemented in OpenSpiel [26]: Kuhn Poker and

Leduc Poker, with 54 and 9300 non-terminal histories, respectively.

Figure 3 presents the NFG results. Across all games considered, it

is evident that FTRL fails to converge to an equilibrium. Conversely,

all other algorithms consistently demonstrate linear convergence

rates, aligning with theoretical guarantees. This observation under-

scores the significant impact of the optimistic update paradigm and

regularization techniques in facilitating last-iterate convergence.

It is noteworthy that RegFTRL shares mathematical equivalence

with MMD within the NFG context. Consequently, RegFTRL-A ex-

hibits performance comparable to that of MMD-A. However, an

interesting contrast emerges between RegFTRL-D and MMD-M,

with the former displaying superior performance. This discrepancy

can potentially be attributed to the reference strategy updated by

the moving magnet approach, which retains past-iterate strategies,

consequently causing it to deviate from the Nash equilibrium.

Figure 4 provides the results observed within Kuhn & Leduc

Poker. Unlike the performances in NFGs, in both Poker games, O-

FTRL performs poorly, which might be attributed to the behavior-

form based implement. In contrast, despite the absence of theo-

retical convergence guarantees under EFGs, both M-RegFTRL and

2-RegFTRL exhibit an exponentially fast convergence rate. This

outcome underscores their potential utility in EFGs, despite the in-

herent lack of formal guarantees. Furthermore, an interesting trend

emerges wherein the adaption approach consistently outperforms

the annealing approach in both NFGs and EFGs. This phenomenon

can be elucidated by referring to Theorem 2, which indicates that a
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decaying weight parameter 𝜏 can bring a slower convergence rate,

aligning with our empirical observations.

6.2 Neural-Based Sample Setting
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Figure 5: Kuhn & Leduc Poker: Exploitability vs. Iterations

Table 1: Mean±standard deviation of the approximate ex-
ploitability on Phantom Tic-Tac-Toe.

FollowMu NFSP PPO Uniform Agent

1M 0.39 ± 0.02 0.91 ± 0.04 0.94 ± 0.03 0.79 ± 0.02
10M 0.21 ± 0.04 0.80 ± 0.03 0.91 ± 0.03 0.79 ± 0.02

In this case, we validate our practical implement of RegFTRL,

i.e., FollowMu, can work effectively with a function approximator.

Within both Poker benchmarks, as depicted in Figure 5, we conduct

a comparative analysis involving FollowMu, NFSP [22], FollowMu

without regularization (i.e., practical implement of FTRL), and Fol-

lowMu with a transformed reward [37]. The results reveal that

FollowMu consistently outperforms the other baselines in terms

of exploitability. The notable disparity between FollowMu and Fol-

lowMu (𝜏 = 0) aligns with the learning dynamics associated with

RegFTRL and FTRL, substantiating the effectiveness of the incorpo-

rated regularization term. Furthermore, our findings indicate that

FollowMu surpasses FollowMuwith a transformed reward. This dis-

tinction may be attributed to the fact that FollowMu introduces the

regularization term at the return level, mitigating the cumulative

sum effect encountered at the reward level.

Table 1 reports the performances of FollowMuwithNFSP, PPO [42],

and Uniform Agent (employing a uniform strategy consistently) on

PhantomTic-Tac-Toe inOpenSpiel, which is an imperfect-information

game where the winner receives a payoff of +1 and the losing player
receives −1. The evaluation of approximate exploitability in Phan-

tom Tic-Tac-Toe is computed through a trained DQN best response,

owing to the substantial scale of the game. The outcomes underscore

that both FollowMu and NFSP exhibit enhanced performance fol-

lowing 10 million steps of training compared to their performance

after 1 million steps. In contrast, PPO exhibits negligible improve-

ment, consistent with the fact that it is designed for single-agent

environments. Notably, FollowMu stands out as the top performer,

significantly outperforming the baselines.

7 Conclusion
In this paper, we introduce RegFTRL to enhance the stability of

FTRL dynamics through a general-case regularization, and estab-

lish the last-iterate linear convergence in NFGs without either the

uniqueness condition or the optimistic update paradigm. Further-

more, our investigation extends to probing the feasibility of achiev-

ing convergence towards an exact Nash equilibrium through two

straightforward yet highly efficient approaches. Additionally, we

extend RegFTRL to EFGs, and propose a model-free reinforcement

learning algorithm for zero-sum games, named FollowMu. The nu-

merical simulation reveals that RegFTRL outperforms FTRL and

O-FTRL in various zero-sum games, and FollowMu attains favor-

able performance levels against strong baselines. Future research

could investigate its analyses in General-SumGames and explore its

application in more complex scenarios, such as Multiplayer Poker.
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A Theoretical guarantee
This section will provide relevant theoretical supplements for the

theorems presented in section 4. For convenience, we denote𝑄1

𝜋 (𝑎) =
𝑄𝜋 (𝑎) and 𝑄2

𝜋 (𝑎) = −𝑄𝜋 (𝑎).

Proposition 1. Assumption 3 is guaranteed when𝑔𝜇 (𝜋) = 𝐷KL (𝜋, 𝜇)
and 𝑔𝜇 (𝜋) = 𝐷KL (𝜇, 𝜋).

Proof. For any interior reference strategy 𝜇, if there exists an

action 𝑎0 such that 𝜋𝜇 (𝑎0) = 0, then 𝑄𝜋𝜇
(𝑎0) − 𝜏 [∇𝑔𝜇 (𝜋𝜇 )]𝑎0 <

𝑄𝜋𝜇
(𝑎∗) − 𝜏 [∇𝑔𝜇 (𝜋𝜇 )]𝑎∗ holds for any 𝑎∗ ∈ {𝑎 ∈ A|𝜋𝜇 (𝑎) > 0}.

However, for 𝑔𝜇 (𝜋) = 𝐷KL (𝜋, 𝜇) and 𝑔𝜇 (𝜋) = 𝐷KL (𝜇, 𝜋), we have:
𝑄𝜋𝜇
(𝑎0) − 𝜏 [∇𝑔𝜇 (𝜋𝜇 )]𝑎0

=


𝑄𝜋𝜇
(𝑎0) − 𝜏 (ln

𝜋𝜇 (𝑎0 )
𝜇 (𝑎0 ) + 1) = ∞, if 𝑔𝜇 (𝜋) = 𝐷KL (𝜋, 𝜇),

𝑄𝜋𝜇
(𝑎0) + 𝜏 𝜇 (𝑎0 )

𝜋𝜇 (𝑎0 ) = ∞, if 𝑔𝜇 (𝜋) = 𝐷KL (𝜇, 𝜋),

which is a contradiction, and thus Assumption 3 holds. □

We continue by proving the properties of regularized equilibrium,

and the last-iterate convergence of continuous-time version of

RegFTRL in NFGs.

A.1 Proof of Theorem 1
Proof. Note that Theorem 2 holds for all regularized equilibria.

This means that 𝜋𝜇 is unique if the weight parameter 𝜏 and the

reference strategy 𝜇 are fixed. Thus we only need to provide the

proofs of the second statement that 𝜋𝜇 is an 𝜖-Nash equilibrium.

Since regularized equilibrium is the interior stationary point of

continuous-time RegFTRL dynamics with𝜓 (𝑝) = ⟨𝑝, ln𝑝⟩. By the

method of Lagrange multiplier, it can be found that the dynamics

defined by continuous-time RegFTRL with the entropy regularizer

is equivalent to the following dynamics:

𝑑

𝑑𝑡
𝜋𝑖𝑡 (𝑎) = 𝜋𝑖𝑡 (𝑎)

(
𝑄𝑖
𝜋𝑡
(𝑎) − 𝜏 [∇𝑔𝑖𝜇 (𝜋𝑖𝑡 )]𝑎 −𝑉 𝑖

𝜋𝑡
+ 𝜏 ⟨𝜋𝑖𝑡 ,∇𝑔𝑖𝜇 (𝜋𝑖𝑡 )⟩

)
(8)

From Assumption 3, we have:

𝑄𝑖
𝜋𝜇
(𝑎) − 𝜏 [∇𝑔𝑖𝜇 (𝜋𝑖𝜇 )]𝑎 −𝑉 𝑖

𝜋𝜇
+ 𝜏 ⟨𝜋𝑖𝜇 ,∇𝑔𝑖𝜇 (𝜋𝑖𝜇 )⟩ = 0 (9)

Therefore, we have:

E(𝜋𝜇 ) =
2∑︁

𝑖=1

max

𝑝𝑖 ∈ΔA
𝑉 𝑖

𝑝,𝜋−𝑖𝜇
=

2∑︁
𝑖=1

[
max

𝑝𝑖 ∈ΔA
𝑉 𝑖

𝑝,𝜋−𝑖𝜇
−𝑉 𝑖

𝜋𝜇

]
=

2∑︁
𝑖=1

[
max

𝑎∈A
𝑄𝑖
𝜋𝜇
(𝑎) −𝑉 𝑖

𝜋𝜇

]
≤ 𝜏

2∑︁
𝑖=1

[
max

𝑎∈A
[∇𝑔𝑖𝜇 (𝜋𝑖𝜇 )]𝑎 − ⟨𝜋𝑖𝜇 ,∇𝑔𝑖𝜇 (𝜋𝑖𝜇 )⟩

]
Thus, the proof is completed. □

A.2 Proof of Theorem 2
Proof. Theorem 2 is the summary of lemma 1, Theorem 4 and

Theorem 5, and thus we omit the proofs here. □

Lemma 1. E can be bounded as follows:

E(𝜋𝑡 ) ≤ E(𝜋𝜇 ) + 2
√︃
𝐷KL (𝜋𝜇 , 𝜋𝑡 ) .

Proof. From the definition of E, we have:

E(𝜋𝑡 ) =
2∑︁

𝑖=1

max

𝑝𝑖 ∈ΔA
𝑉 𝑖

𝑝,𝜋−𝑖𝑡

=

2∑︁
𝑖=1

(
max

𝑝𝑖 ∈ΔA
𝑉 𝑖

𝑝,𝜋−𝑖𝜇
+ max

𝑝𝑖 ∈ΔA
𝑉 𝑖

𝑝,𝜋−𝑖𝑡

− max

𝑝𝑖 ∈ΔA
𝑉 𝑖

𝑝,𝜋−𝑖𝜇

)
=E(𝜋𝜇 ) +

2∑︁
𝑖=1

(
max

𝑝𝑖 ∈ΔA
𝑉 𝑖

𝑝,𝜋−𝑖𝑡

− max

𝑝𝑖 ∈ΔA
𝑉 𝑖

𝑝,𝜋−𝑖𝜇

)
≤E(𝜋𝜇 ) +

2∑︁
𝑖=1

max

𝑝𝑖 ∈ΔA

(
𝑉 𝑖

𝑝,𝜋−𝑖𝑡

−𝑉 𝑖

𝑝,𝜋−𝑖𝜇

)
Hölder’s inequality

≤ E(𝜋𝜇 ) +
2∑︁

𝑖=1

(
∥𝜋𝑖𝜇 − 𝜋𝑖𝑡 ∥1 max

𝑝−𝑖 ∈ΔA
∥𝑄𝑖

𝜋𝑖
𝑡 ,𝑝
−𝑖 ∥∞

)
Pinsker inequality

≤ E(𝜋𝜇 ) +
2∑︁

𝑖=1

√︃
2𝐷KL (𝜋𝑖𝜇 , 𝜋𝑖𝑡 )

Cauchy inequality

≤ E(𝜋𝜇 ) +
√
2

√√√
2

2∑︁
𝑖=1

𝐷KL (𝜋𝑖𝜇 , 𝜋𝑖𝑡 )

=E(𝜋𝜇 ) + 2
√︃
𝐷KL (𝜋𝜇 , 𝜋𝑡 ).

□

A.2.1 Continuous-Time RegFTRL.

Theorem 4. Let Assumption 1∼3 hold. Then, 𝜋𝑡 generated by
continuous-time version of RegFTRL dynamics satisfies:

𝐷𝜓 (𝜋𝜇 , 𝜋𝑡 ) ≤ 𝐷𝜓 (𝜋𝜇 , 𝜋0) · exp(−𝜂𝜏𝜆 · 𝑡) .

Proof. By lemma C.1 in [3], we have:

𝑑

𝑑𝑡
𝐷𝜓 (𝜋𝜇 , 𝜋𝑡 ) =

∑︁
𝑖

〈 𝑑
𝑑𝑡

𝑦𝑖𝑡 , 𝜋
𝑖
𝑡 − 𝜋𝑖𝜇

〉
= 𝜂

∑︁
𝑖

〈
𝑄𝑖
𝜋𝑡
− 𝜏∇𝑔𝑖𝜇 (𝜋𝑖𝑡 ), 𝜋𝑖𝑡 − 𝜋𝑖𝜇

〉
= 𝜂

∑︁
𝑖

{
𝑉 𝑖
𝜋𝑡
−𝑉 𝑖

𝜋𝑖
𝜇 ,𝜋
−𝑖
𝑡

− 𝜏 ⟨∇𝑔𝑖𝜇 (𝜋𝑖𝑡 ), 𝜋𝑖𝑡 − 𝜋𝑖𝜇⟩
}

= 𝜂
∑︁
𝑖

{
𝑉 𝑖

𝜋𝑖
𝑡 ,𝜋
−𝑖
𝜇
− 𝜏 ⟨∇𝑔𝑖𝜇 (𝜋𝑖𝑡 ), 𝜋𝑖𝑡 − 𝜋𝑖𝜇⟩

}
= 𝜂

∑︁
𝑖

{
⟨𝜋𝑖𝑡 , 𝑄𝑖

𝜋𝜇
⟩ − 𝜏 ⟨∇𝑔𝑖𝜇 (𝜋𝑖𝑡 ), 𝜋𝑖𝑡 − 𝜋𝑖𝜇⟩

}
= 𝜂

∑︁
𝑖

{
𝑉 𝑖
𝜋𝜇
− 𝜏 ⟨∇𝑔𝑖𝜇 (𝜋𝑖𝜇 ), 𝜋𝑖𝜇⟩

+ 𝜏 ⟨∇𝑔𝑖𝜇 (𝜋𝑖𝜇 ), 𝜋𝑖𝑡 ⟩ − 𝜏 ⟨∇𝑔𝑖𝜇 (𝜋𝑖𝑡 ), 𝜋𝑖𝑡 − 𝜋𝑖𝜇⟩
}

= −𝜂𝜏
∑︁
𝑖

{
⟨∇𝑔𝑖𝜇 (𝜋𝑖𝜇 ) − ∇𝑔𝑖𝜇 (𝜋𝑖𝑡 ), 𝜋𝑖𝜇 − 𝜋𝑖𝑡

〉
≤ −𝜂𝜏𝜆

∑︁
𝑖

{
⟨∇𝜓 (𝜋𝑖𝜇 ) − ∇𝜓 (𝜋𝑖𝑡 ), 𝜋𝑖𝜇 − 𝜋𝑖𝑡

〉
= −𝜂𝜏𝜆

[
𝐷𝜓 (𝜋𝜇 , 𝜋𝑡 ) + 𝐷𝜓 (𝜋𝑡 , 𝜋𝜇 )

]
≤ −𝜂𝜏𝜆𝐷𝜓 (𝜋𝜇 , 𝜋𝑡 ) . (10)
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The sixth equality follows from Eq.(9). Therefore, we have:

𝐷𝜓 (𝜋𝜇 , 𝜋𝑡 ) ≤ 𝐷𝜓 (𝜋𝜇 , 𝜋0) · exp(−𝜂𝜏𝜆 · 𝑡) .

Thus, the proof is completed. □

A.2.2 Discrete-Time RegFTRL.

Theorem 5. Let Assumption 1∼3 hold. Then, 𝜋𝑡 generated by
discrete-time version of RegFTRL dynamics satisfies:

𝐷𝜓 (𝜋𝜇 , 𝜋𝑡 ) ≤ 𝐷𝜓 (𝜋𝜇 , 𝜋0) · (1 + 𝜂𝜏𝜆)−𝑡 ,

if𝜓 (𝑝) = ⟨𝑝, ln𝑝⟩ and 0 < 𝜂 ≤ 𝜏𝜆

�̃�2
, where �̃� = max{𝜏𝐿, 1}.

Proof. Let us define 𝑓 𝑖𝜋 := 𝑄𝑖
𝜋 −𝜏∇𝑔𝑖𝜇 (𝜋𝑖 ). With𝜓 (𝑝) = ⟨𝑝, ln𝑝⟩

and the method of Lagrange multiplier, 𝜋𝑡 generated by RegFTRL

satisfies:

𝜋𝑖𝑡+1 (𝑎) ∝ 𝜋𝑖𝑡 (𝑎) exp
{
𝜂
[
𝑄𝑖
𝜋𝑡
(𝑎) − 𝜏 [∇𝑔𝑖𝜇 (𝜋𝑖𝑡 )]𝑎

]}
⇐⇒ 𝜋𝑖𝑡+1 = argmax

𝑝∈ΔA

{
𝜂⟨𝑝, 𝑓 𝑖𝜋𝑡 ⟩ − 𝐷𝜓 (𝑝, 𝜋𝑖𝑡 )

}
⇐⇒

〈
𝜂𝑓 𝑖𝜋𝑡 − ∇𝜓 (𝜋

𝑖
𝑡+1) + ∇𝜓 (𝜋

𝑖
𝑡 ), 𝜋𝑖 − 𝜋𝑖𝑡+1

〉
≤ 0, ∀𝜋𝑖 ∈ ΔA

⇐⇒
〈
𝜂𝑓 𝑖𝜋𝑡 , 𝜋

𝑖 − 𝜋𝑖𝑡+1
〉
≤
〈
∇𝜓 (𝜋𝑖𝑡+1) − ∇𝜓 (𝜋

𝑖
𝑡 ), 𝜋𝑖 − 𝜋𝑖𝑡+1

〉
,

∀𝜋𝑖 ∈ ΔA
⇐⇒

〈
𝜂𝑓 𝑖𝜋𝑡 , 𝜋

𝑖 − 𝜋𝑖𝑡+1
〉

≤ 𝐷KL (𝜋𝑖 , 𝜋𝑖𝑡 ) − 𝐷KL (𝜋𝑖 , 𝜋𝑖𝑡+1) − 𝐷KL (𝜋𝑖𝑡+1, 𝜋
𝑖
𝑡 ),
∀𝜋𝑖 ∈ ΔA

The third “⇐⇒" follows from the equivalent first order optimality

conditions. Therefore, we have:

𝐷KL (𝜋𝑖𝜇 , 𝜋𝑖𝑡+1) ≤ 𝐷KL (𝜋𝑖𝜇 , 𝜋𝑖𝑡 ) − 𝐷KL (𝜋𝑖𝑡+1, 𝜋
𝑖
𝑡 ) − 𝜂

〈
𝑓 𝑖𝜋𝑡 , 𝜋

𝑖
𝜇 − 𝜋𝑖𝑡+1

〉
.

(11)

On the other hand, we have:

𝜂

2∑︁
𝑖=1

〈
𝑓 𝑖𝜋𝑡 , 𝜋

𝑖
𝜇 − 𝜋𝑖𝑡

〉
=𝜂

2∑︁
𝑖=1

〈
𝑓 𝑖𝜋𝜇

, 𝜋𝑖𝜇 − 𝜋𝑖𝑡
〉
+ 𝜂

2∑︁
𝑖=1

〈
𝑄𝑖
𝜋𝑡
−𝑄𝑖

𝜋𝜇
, 𝜋𝑖𝜇 − 𝜋𝑖𝑡

〉
+ 𝜂𝜏

2∑︁
𝑖=1

〈
∇𝑔𝑖𝜇 (𝜋𝑖𝜇 ) − ∇𝑔𝑖𝜇 (𝜋𝑖𝑡 ), 𝜋𝑖𝜇 − 𝜋𝑖𝑡

〉
≥𝜂𝜏𝜆

2∑︁
𝑖=1

〈
∇𝜓 (𝜋𝑖𝜇 ) − ∇𝜓 (𝜋𝑖𝑡 ), 𝜋𝑖𝜇 − 𝜋𝑖𝑡

〉
=𝜂𝜏𝜆

[
𝐷KL (𝜋𝜇 , 𝜋𝑡 ) + 𝐷KL (𝜋𝑡 , 𝜋𝜇 )

]
. (12)

The inequality follows from the fact that〈
𝑓 𝑖𝜋𝜇

, 𝜋𝑖𝜇 − 𝜋𝑖𝑡
〉
=
〈
𝑉 𝑖
𝜋𝜇
1 − 𝜏 ⟨𝜋𝑖𝜇 ,∇𝑔𝑖𝜇 (𝜋𝑖𝜇 )⟩1, 𝜋𝑖𝜇 − 𝜋𝑖𝑡

〉
= 0,

and

2∑︁
𝑖=1

〈
𝑄𝑖
𝜋𝑡
−𝑄𝑖

𝜋𝜇
, 𝜋𝑖𝜇 − 𝜋𝑖𝑡

〉
=

2∑︁
𝑖=1

(𝑉 𝑖

𝜋𝑖
𝜇 ,𝜋
−𝑖
𝑡

−𝑉 𝑖
𝜋𝜇
−𝑉 𝑖

𝜋𝑡
+𝑉 𝑖

𝜋𝑖
𝑡 ,𝜋
−𝑖
𝜇
) = 0.

By combining Eq.(11) and Eq.(12), we have:

𝐷KL (𝜋𝜇 , 𝜋𝑡+1)
≤𝐷KL (𝜋𝜇 , 𝜋𝑡 ) − 𝐷KL (𝜋𝑡+1, 𝜋𝑡 )

− 𝜂
2∑︁

𝑖=1

〈
𝑓 𝑖𝜋𝑡 , 𝜋

𝑖
𝜇 − 𝜋𝑖𝑡+1

〉
≤𝐷KL (𝜋𝜇 , 𝜋𝑡 ) − 𝐷KL (𝜋𝑡+1, 𝜋𝑡 ) − 𝜂𝜏𝜆𝐷KL (𝜋𝜇 , 𝜋𝑡+1)

− 𝜂𝜏𝜆𝐷KL (𝜋𝑡+1, 𝜋𝜇 ) + 𝜂
2∑︁

𝑖=1

〈
𝑓 𝑖𝜋𝑡+1 − 𝑓 𝑖𝜋𝑡 , 𝜋

𝑖
𝜇 − 𝜋𝑖𝑡+1

〉
≤𝐷KL (𝜋𝜇 , 𝜋𝑡 ) − 𝐷KL (𝜋𝑡+1, 𝜋𝑡 )
− 𝜂𝜏𝜆𝐷KL (𝜋𝜇 , 𝜋𝑡+1) − 𝜂𝜏𝜆𝐷KL (𝜋𝑡+1, 𝜋𝜇 )
+ 𝜂max{1, 𝜏𝐿}∥𝜋𝑡+1 − 𝜋𝑡 ∥1 · ∥𝜋𝑡+1 − 𝜋𝜇 ∥1
≤𝐷KL (𝜋𝜇 , 𝜋𝑡 ) − 𝐷KL (𝜋𝑡+1, 𝜋𝑡 )
− 𝜂𝜏𝜆𝐷KL (𝜋𝜇 , 𝜋𝑡+1) − 𝜂𝜏𝜆𝐷KL (𝜋𝑡+1, 𝜋𝜇 )

+ 1

2

∥𝜋𝑡+1 − 𝜋𝑡 ∥21 +
𝜂2�̃�2

2

∥𝜋𝑡+1 − 𝜋𝜇 ∥21
≤𝐷KL (𝜋𝜇 , 𝜋𝑡 ) − 𝐷KL (𝜋𝑡+1, 𝜋𝑡 )
− 𝜂𝜏𝜆𝐷KL (𝜋𝜇 , 𝜋𝑡+1) − 𝜂𝜏𝜆𝐷KL (𝜋𝑡+1, 𝜋𝜇 )
+ 𝐷KL (𝜋𝑡+1, 𝜋𝑡 ) + 𝜂2�̃�2𝐷KL (𝜋𝑡+1, 𝜋𝜇 )
≤𝐷KL (𝜋𝜇 , 𝜋𝑡 ) − 𝜂𝜏𝜆𝐷KL (𝜋𝜇 , 𝜋𝑡+1) . (13)

The third inequality follows from the fact that 𝑟 (𝑎1, 𝑎2) ∈ [0, 1]
and ∇𝑔 is 𝐿-smooth. Next, we successively apply the inequalities

�̃� = max 1, 𝜏𝐿, 2𝑎𝑏 ≤ 𝜌𝑎2 + 𝑏2

𝜌 , Pinsker’s inequality, and 𝜂 ≤ 𝜏𝜆

�̃�2
.

Therefore, we have:

𝐷KL (𝜋𝜇 , 𝜋𝑡+1) ≤
1

1 + 𝜂𝜏𝜆𝐷KL (𝜋𝜇 , 𝜋𝑡 ). (14)

Thus, the proof is completed. □

A.3 Proof of Theorem 3
We begin with following useful lemmas.

Lemma 2. If 𝜋𝜇 ≠ 𝜇, we have 𝐷𝜙 (𝜋∗, 𝜋𝜇 ) < 𝐷𝜙 (𝜋∗, 𝜇),∀𝜋∗ ∈ Π∗.

Proof. From the definition of the regularized equilibrium, we

have

𝐷𝜙 (𝜋∗, 𝜋𝜇 ) − 𝐷𝜙 (𝜋∗, 𝜇)

= − 𝐷𝜙 (𝜋𝜇 , 𝜇) −
2∑︁

𝑖=1

⟨∇𝜙 (𝜋𝑖𝜇 ) − ∇𝜙 (𝜇𝑖 ), 𝜋𝑖∗ − 𝜋𝑖𝜇⟩

= − 𝐷𝜙 (𝜋𝜇 , 𝜇) −
1

𝜏

2∑︁
𝑖=1

⟨𝑄𝑖
𝜋𝜇
, 𝜋𝑖∗ − 𝜋𝑖𝜇⟩

≤ − 𝐷𝜙 (𝜋𝜇 , 𝜇) < 0.

The inequality follows from the fact that

−
2∑︁

𝑖=1

⟨𝑄𝑖
𝜋𝜇
, 𝜋𝑖∗ − 𝜋𝑖𝜇⟩ =

2∑︁
𝑖=1

[𝑉 𝑖

𝜋𝑖
𝜇 ,𝜋
−𝑖
∗
−𝑉 𝑖

𝜋∗ ] ≤ 0.

Thus, the proof is completed. □

Lemma 3. If 𝜋𝜇 = 𝜇, then 𝜇 is a Nash equilibrium of the original
game.
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Proof. By the definition of the regularized equilibrium, when

𝜋𝜇 = 𝜇, we have:

𝜋𝑖𝜇 (𝑎)
[
𝑄𝑖
𝜋𝜇
(𝑎) − 𝜏 [∇𝑔𝑖𝜇 (𝜋𝑖𝜇 )]𝑎 −𝑉 𝑖

𝜋𝜇
+ 𝜏 ⟨𝜋𝑖𝜇 ,∇𝑔𝑖𝜇 (𝜋𝑖𝜇 )⟩

]
= 0

𝜋𝜇 (𝑎)>0
=⇒ 𝑄𝑖

𝜋𝜇
(𝑎) − 𝜏 [∇𝑔𝑖𝜇 (𝜋𝑖𝜇 )]𝑎 −𝑉 𝑖

𝜋𝜇
+ 𝜏 ⟨𝜋𝑖𝜇 ,∇𝑔𝑖𝜇 (𝜋𝑖𝜇 )⟩ = 0

𝜋𝜇=𝜇
=⇒ 𝑄𝑖

𝜋𝜇
(𝑎) −𝑉 𝑖

𝜋𝜇
= 0

Therefore, 𝑉 𝑖
𝜋𝜇

= max𝑎ΔA 𝑄𝑖
𝜋𝜇
(𝑎) for 𝑖 = 1, 2, which means that

each player’s strategy is a best response to the strategy of the other

player. Thus, 𝜇 is a Nash equilibrium of the original game. □

Lemma 4. For any 𝑘 ≥ 0, if 𝜇𝑘 ∈
∏

2

𝑖=1 Δ
◦
A\Π∗, then

min𝜋∗∈Π∗ 𝐷𝜙 (𝜋∗, 𝜇𝑘+1) < min𝜋∗∈Π∗ 𝐷𝜙 (𝜋∗, 𝜇𝑘 ). Otherwise, if 𝜇𝑘 ∈
Π∗, then 𝜇𝑘+1 = 𝜇𝑘 ∈ Π∗.

Proof. From lemma 3, if 𝜇 ∈ ∏2

𝑖=1 Δ
◦
A\Π∗, thenwe have 𝜋𝜇 ≠ 𝜇.

Denote 𝜋∗ = argmin𝜋∗∈Π∗ 𝐷𝜙 (𝜋∗, 𝜇). Then from lemma 2, if 𝜇 ≠ 𝜋𝜇 ,

we have:

min

𝜋∗∈Π∗
𝐷𝜙 (𝜋∗, 𝜇) = 𝐷𝜙 (𝜋∗, 𝜇) > 𝐷𝜙 (𝜋∗, 𝜋𝜇 ) ≥ min

𝜋∗∈Π∗
𝐷𝜙 (𝜋∗, 𝜋𝜇 ) .

Therefore, we prove the first statement of the lemma. Then we

assume that 𝜇 ∈ Π∗ implies 𝜋𝜇 ≠ 𝜇. From lemma 2, we have

𝐷𝜙 (𝜋∗, 𝜇) > 𝐷𝜙 (𝜋∗, 𝜋𝜇 ) for any 𝜋∗ ∈ Π∗, and thus 0 > 𝐷𝜙 (𝜇, 𝜋𝜇 )
due to 𝑟 ∈ Π∗. It is a contradiction.

Thus, the proof is completed. □

Lemma 5. Let 𝐹 (𝜇) = 𝜋𝜇 be a map that maps the reference strat-
egy 𝜇 to its corresponding regularized equilibrium 𝜋𝜇 . Then, 𝐹 is
continuous.

Proof. For any given reference strategies 𝜇, 𝜇 ∈ ∏
𝑖 Δ
◦
A , we

denote their associated stationary points as 𝜋𝜇 , 𝜋𝜇 respectively.

Suppose that 𝜋𝑡 is the updated strategy of continues-time FTRL

dynamics with reference strategy 𝜇 and𝜓 (𝑝) = ⟨𝑝, ln𝑝⟩, then

𝑑

𝑑𝑡
𝜋𝑖𝑡 (𝑎) = 𝜋𝑖𝑡 (𝑎)

[
𝑄𝑖
𝜋𝑡
(𝑎) − 𝜏 [∇𝑔𝑖𝜇 (𝜋𝑖𝑡 )]𝑎 −𝑉 𝑖

𝜋𝑡
+ 𝜏 ⟨𝜋𝑖𝑡 ,∇𝑔𝑖𝜇 (𝜋𝑖𝑡 )⟩

]
.

Therefore, we have

𝑑

𝑑𝑡
𝐷KL (𝜋𝜇 , 𝜋𝑡 ) = −

2∑︁
𝑖=1

⟨𝜋𝑖
𝜇
,
1

𝜋𝑖𝑡

𝑑

𝑑𝑡
𝜋𝑖𝑡 ⟩

=

2∑︁
𝑖=1

⟨𝜋𝑖𝑡 − 𝜋𝑖𝜇 , 𝑄
𝑖
𝜋𝑡
− 𝜏∇𝑔𝑖𝜇 (𝜋𝑖𝑡 )⟩

=

2∑︁
𝑖=1

⟨𝜋𝑖𝑡 − 𝜋𝑖𝜇 , 𝑄
𝑖
𝜋𝑡
− 𝜏 [∇𝜙 (𝜋𝑖𝑡 ) − ∇𝜙 (𝜇𝑖 )]⟩︸                                                 ︷︷                                                 ︸
(1)

+ 𝜏
2∑︁

𝑖=1

⟨𝜋𝑖𝑡 − 𝜋𝑖𝜇 ,∇𝜙 (𝜇
𝑖 ) − ∇𝜙 (𝜇𝑖 )⟩︸                                     ︷︷                                     ︸

(2)

.

Then,

(1) =
2∑︁

𝑖=1

𝑉𝜋𝑖
𝑡 ,𝜋
−𝑖
�̂�
− 𝜏

2∑︁
𝑖=1

⟨𝜋𝑖𝑡 − 𝜋𝑖𝜇 ,∇𝜙 (𝜋
𝑖
𝑡 ) − ∇𝜙 (𝜇𝑖 )⟩

=

2∑︁
𝑖=1

⟨𝜋𝑖𝑡 , 𝑄𝑖
𝜋�̂�
⟩ − 𝜏

2∑︁
𝑖=1

⟨𝜋𝑖𝑡 − 𝜋𝑖𝜇 ,∇𝜙 (𝜋
𝑖
𝑡 ) − ∇𝜙 (𝜇𝑖 )⟩

=

2∑︁
𝑖=1

⟨𝜋𝑖𝑡 ,𝑉 𝑖
𝜋�̂�
⟩ + 𝜏

2∑︁
𝑖=1

⟨𝜋𝑖𝑡 − 𝜋𝑖𝜇 ,∇𝜙 (𝜋
𝑖
𝜇
) − ∇𝜙 (𝜇𝑖 )⟩

− 𝜏
2∑︁

𝑖=1

⟨𝜋𝑖𝑡 − 𝜋𝑖𝜇 ,∇𝜙 (𝜋
𝑖
𝑡 ) − ∇𝜙 (𝜇𝑖 )⟩

= 𝜏

2∑︁
𝑖=1

⟨𝜋𝑖𝑡 − 𝜋𝑖𝜇 ,∇𝜙 (𝜋
𝑖
𝜇
) − ∇𝜙 (𝜋𝑖𝑡 )⟩

= −𝜏𝐷𝜙 (𝜋𝑡 , 𝜋𝜇 ) − 𝜏𝐷𝜙 (𝜋𝜇 , 𝜋𝑡 ) .

On the other hand, we have (2) ≤ 2𝜏𝐿∥𝜇 − 𝜇∥. By setting 𝜋𝑡 = 𝜋𝜇 ,

we have 𝜋𝑡 = 𝜋𝜇 , for any 𝑡 ≥ 0, and thus we have 𝐷𝜙 (𝜋𝜇 , 𝜋𝜇 ) ≤
2𝐿∥𝜇 − 𝜇∥, which means that 𝐹 is continuous.

Thus, the proof is completed. □

Proof of Theorem 3

Proof. In the case that 𝑔𝜇 (𝜋) = 𝐷KL (𝜇, 𝜋), RegFTRL is equiva-

lent withM2WU, and thus the convergence result can be guaranteed

by Theorem 6.1 in [2]. We next provide the proof of the case that

𝑔𝜇 (𝜋) = 𝐷𝜙 (𝜋, 𝜇). Denote 𝑏 = lim𝑘→∞min𝜋∗∈Π∗ 𝐷𝜙 (𝜋∗, 𝜇𝑘 ) ≥ 0.

We next prove that 𝑏 = 0 and thus 𝜇𝑘 converges to Π∗.
By contradiction, we suppose that 𝑏 > 0 and define

𝐵 = min𝜋∗∈Π∗ 𝐷𝜙 (𝜋∗, 𝜇0). From lemma 4, min𝜋∗∈Π∗ 𝐷𝜙 (𝜋∗, 𝜇𝑘 )
monotonically decreases, and thus each 𝜇𝑘 falls into the set Ω𝑏,𝐵 =

{𝜇 ∈ ∏
2

𝑖=1 Δ
◦
A : 𝑏 ≤ min𝜋∗∈Π∗ 𝐷𝜙 (𝜋∗, 𝜇) ≤ 𝐵}. From lemma 5,

min𝜋∗∈Π∗ 𝐷𝜙 (𝜋∗, 𝜇) is continuous on
∏

2

𝑖=1 Δ
◦
A(𝐼 ) , and thus Ω𝑏,𝐵

is a compact set due to the boundedness of

∏
2

𝑖=1 Δ
◦
A .

From lemma 5, Δ𝑉 (𝜇) := min𝜋∗∈Π∗ 𝐷𝜙 (𝜋∗, 𝐹 (𝜇)) −
min𝜋∗∈Π∗ 𝐷𝜙 (𝜋∗, 𝜇) is also continuous. Thus Δ𝑉 (𝜇) has a maxi-

mum over a compact set, i.e., 𝑀 = max𝜇∈Ω𝑏,𝐵
Δ𝑉 (𝜇) exists. From

Lemma 4,𝑀 < 0, and thus we have:

min

𝜋∗∈Π∗
𝐷𝜙 (𝜋∗, 𝜇𝑘 ) = min

𝜋∗∈Π∗
𝐷𝜙 (𝜋∗, 𝜇0)

+
𝑘−1∑︁
𝑙=0

(
min

𝜋∗∈Π∗
𝐷𝜙 (𝜋∗, 𝜇𝑙+1) − min

𝜋∗∈Π∗
𝐷𝜙 (𝜋∗, 𝜇𝑙 )

)
≤ 𝐵 + 𝑘𝑀.

This implies that min𝜋∗∈Π∗ 𝐷𝜙 (𝜋∗, 𝜇𝑘 ) < 0 for 𝑘 > −𝐵
𝑀

, which is a

contradiction since min𝜋∗∈Π∗ 𝐷𝜙 (𝜋∗, 𝜇𝑘 ) ≥ 0.

Thus, the proof is completed. □
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Table 2: Hyper-Parameter Settings of RegFTRL in M-NE/Random Game.

learning rate 𝜂 regularization parameter 𝜏 update period 𝑁

RegFTRL-A
10

1+10×𝜏 ,
10

1+10×𝜏 10
1−𝑡/500, 101−𝑡/300 0, 0

RegFTRL-D
15

1+15×𝜏 ,
6

1+6×𝜏
15

𝑡 ,
6

𝑡 10, 100

M-RegFTRL-A 10, 10 10
1−𝑡/500, 101−𝑡/300 0, 0

M-RegFTRL-D 10, 6 10

𝑡 ,
6

𝑡 10, 100

2-RegFTRL-A 10, 20 10
1−𝑡/500, 101−𝑡/300 0, 0

2-RegFTRL-D 10, 6.5 10

𝑡 ,
6

𝑡 10, 100

Table 3: Hyper-Parameter Settings of RegFTRL in Kuhn/Leduc Poker.

learning rate 𝜂 regularization parameter 𝜏 update period 𝑁

RegFTRL-A
1√
𝑡
, 1√

𝑡

1√
𝑡
, 5√

𝑡
0, 0

RegFTRL-D 0.3, 0.11 0.1, 1 30, 30

M-RegFTRL-A
1√
𝑡
, 1√

𝑡

0.5√
𝑡
, 3√

𝑡
0, 0

M-RegFTRL-D 0.1, 0.11 0.1, 1 30, 30

2-RegFTRL-A
1√
𝑡
, 1√

𝑡

2√
𝑡
, 20√

𝑡
0, 0

2-RegFTRL-D 0.1, 0.11 0.5, 7 30, 30

B Experimental Settings
B.1 Full-Information Feedback Setting
The payoff matrices of M-NE from [51] is as follows:

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5

𝑥1 0 1 −1 0 0

𝑥2 −1 0 1 0 0

𝑥3 1 −1 0 0 0

𝑥4 1 −1 0 −2 1

𝑥5 1 −1 0 1 −2

M-NE has the following set of Nash equilibria:

Π1

∗ = {(1/3, 1/3, 1/3, 0, 0)},Π2

∗ = {𝑦 ∈ Δ5 |𝑦1 = 𝑦2 = 𝑦3;𝑦5/2 ≤
𝑦4 ≤ 2𝑦5}. For the random utility game, the 50 × 50 payoff matrix

is drawn from a standard Gaussian distribution in an i.i.d. manner.

The benchmarks of Kuhn/Leduc Poker is from OpenSpiel. The

hyper-parameters for RegFTRL in NFGs are listed in Table 2, and

the hyper-parameters in EFGs are listed in Table 3.

B.2 Neural-Based Sample Setting
The benchmarks of Kuhn/Leduc Poker and the implementation

of NFSP are all from OpenSpiel, and all the experiments are run

on A30. The hyper-parameters for FollowMu are listed in Table 4,

while those for NFSP are listed in Table 5, which are referenced

from the report [48].

C Additional Preliminaries
C.1 Game Decomposition
Several recent works have shown that an arbitrary game (normal-

form type or differential-form type) can be uniquely decomposed

into a sum of Hamiltonian and potential components through the

generalized Helmholtz decomposition theorem [7, 29]. There are

Table 4: Hyper-Parameter Settings of FollowMu in
Kuhn/Leduc Poker.

Parameter Value

hidden_layers_sizes [128, 128]
batch_size 1024

mini_batch_size 128/256
logit_learning_rate 0.001/0.0005
critic_learning_rate 0.005

max_global_gradient_norm 10.0

optimizer_str sgd

eta 0.2

refer_policy_update_every 200/500
clip_strength 100

thus two “pure" games: Hamiltonian games (only the Hamilton-

ian component is present) and potential games (only the potential

component). Hamiltonian games, such as Rock-Paper-Scissors, are

actually divergence-free vector fields where the cyclic behaviors

arise [7]. Hence, FTRL will get stuck in cycles around equilibrium

if the Hamiltonian component of the underlying game is dominant.

On the other hand, a game is a potential game if there is a single po-

tential function 𝑔 such that𝑉𝜋1,𝜋2 −𝑉𝜋1,𝜋2 = −𝑔(𝜋1, 𝜋2) +𝑔(𝜋1, 𝜋2)
for all 𝜋1, 𝜋1, 𝜋2. Potential games are well-studied because they can

be solved by following the gradient dynamics [7, 35].

C.2 Follow-the-Regularized-Leader
FTRL is an intuitive algorithm: at each time step it maximizes the

sum of the past returns with a regularization. For conciseness, we

only present the definition of FTRL in NFGs here. Formally, FTRL
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Table 5: Hyper-Parameter Settings of NFSP in Kuhn/Leduc
Poker.

Parameter Value

hidden_layers_sizes [128, 128]
replay_buffer_capacity 200000

reservoir_buffer_capacity 2000000

min_buffer_size_to_learn 1000

anticipatory_param 1

batch_size 128

learn_every 128

rl_learning_rate 0.01

sl_learning_rate 0.01

optimizer_str sgd

update_target_network_every 19200

discount_factor 1.0

epsilon_decay_duration 10000000

epsilon_start 0.06

epsilon_end 0.001

dynamics is defined as follows:

𝜋𝑖𝑡 = argmax

𝑝∈ΔA
[𝜂⟨𝑝,𝑦𝑖𝑡 ⟩ −𝜓𝑖 (𝑝)], (15)

𝑦𝑖𝑡 (𝑎) =
∫ 𝑡

0

𝛿𝑖 ·𝑄𝜋𝑘 (𝑎)𝑑𝑘, 𝛿𝑖 = 2 · 1𝑖=1 − 1,

where ⟨·, ·⟩ means inner product, 𝜂 > 0 is the learning rate, and the

regularization function𝜓 : ΔA → R is strictly convex and continu-

ously differentiable on ΔA . Note that
∫ 𝑡

0
𝑄𝜋𝑘 (𝑎)𝑑𝑘 =

∑𝑡−1
𝑘=0

𝑄𝜋𝑘 (𝑎)
under discrete-time settings.

Two prototypical examples of FTRL can be yielded by choos-

ing different regularizers: 1) Replicator Dynamics (RD) induced

by the entropy regularizer𝜓𝑖 (𝑝) =
∑
𝑎 𝑝 (𝑎) ln𝑝 (𝑎); and 2) Projec-

tion Dynamics (PD) induced by the (square) Euclidean regularizer

𝜓𝑖 (𝑝) = 1

2

∑
𝑎 |𝑝 (𝑎) |2 [33].

RD is an important learning dynamics studied in evolution game

theory [25, 53], where the central focus is to mimic the popula-

tion’s evolution process. The dynamics of RD can be given by the

following differential equation:

𝑑

𝑑𝑡
𝜋𝑖𝑡 (𝑎) = 𝜋𝑖𝑡 (𝑎)𝛿𝑖 (𝑄𝜋𝑡 (𝑎) −𝑉𝜋𝑡 ). (16)

PD is introduced as a geometric model of the evolution of play

in population games [19]. Denoting the support set of policy as

supp(𝜋𝑖𝑡 ) = {𝑎 ∈ A : 𝜋𝑖𝑡 (𝑎) > 0}, the dynamics of PD can be

defined as follows:

𝑑

𝑑𝑡
𝜋𝑖𝑡 (𝑎) = 𝛿𝑖𝑄𝜋𝑡 (𝑎) − |supp(𝜋𝑖𝑡 ) |−1

∑︁
𝑎′∈supp(𝜋𝑖

𝑡 )
𝛿𝑖𝑄𝜋𝑡 (𝑎′), (17)

if 𝑎 ∈ supp(𝜋𝑖𝑡 ), and
𝑑
𝑑𝑡
𝜋𝑖𝑡 (𝑎) = 0 otherwise.
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