
SOPPU: Scalable One PEFT per User

ABSTRACT
As Large Language Models (LLMs) become increasingly central to
AI applications, the need for personalized adaptation while main-
taining efficiency in serving has become critical. We present SOPPU
(Scalable One PEFT per User), a novel framework enabling decen-
tralized, personalized AI through efficient compression and serving
of individual user adaptations. SOPPU combines two key innova-
tions: client-side compression of personal PEFT adapters using ad-
vanced LoRA compression techniques, and scalable serving through
LoRAX. Our approach achieves a 1.99x compression ratio with
49.7% memory savings while maintaining adapter functionality.
This enables users to maintain multiple compressed personal LLM
adaptations while ensuring efficient serving through a centralized
inference server. Code available here: https://tinyurl.com/yrpb9kd3

1 INTRODUCTION
Large Language Models (LLMs) have demonstrated remarkable
capabilities across diverse tasks [1, 5]. However, deploying these
models in a way that serves individual users while maintaining
efficiency presents significant challenges:
• Computation: Running full LLMs locally is computationally
prohibitive for most users
• Storage: Maintaining separate model copies for each user is
impractical at scale
• Adaptation: Models need efficient personalization without
compromising base model access
• Serving: Efficient handling of multiple user adapters re-
quires sophisticated management

We present SOPPU, a framework that addresses these challenges
through two key innovations:

(1) Client-side efficient LoRA compression, reducing storage and
memory requirements while preserving adaptation quality

(2) Dynamic adapter serving via LoRAX, enabling scalable de-
ployment of personal adapters

Our experimental results demonstrate:
• 1.99x compression ratio (1.7M to 856K parameters)
• 49.7% average memory savings across adapters
• Layerwise analysis showing better preservation of early
layer information
• Effective scaling to thousands of concurrent users through
LoRAX

SOPPU’s key insight is that by maintaining compressed individ-
ual LoRA adapters for each user, we can achieve personalization
while enabling efficient serving. The adapters are compressed lo-
cally by users and served dynamically through a central inference
server, creating a scalable system for personal AI.

2 BACKGROUND AND RELATEDWORK
2.1 Parameter-Efficient Fine-tuning
Parameter-efficient fine-tuning (PEFT) methods have emerged as
effective techniques for adapting LLMs while updating only a small

fraction of parameters. LoRA [5] introduces low-rank adaptation
matrices that can be efficiently trained and merged. This has been
extended to personalization tasks [6] and efficient serving.

2.2 Adapter Compression and Serving
Recent advances show that LoRA adapters can be effectively com-
pressed [3] while maintaining performance. This builds on research
in model compression [2] and knowledge distillation [4]. For serv-
ing, LoRAX enables efficient management of multiple adapters
through dynamic loading and batching.

3 SOPPU ARCHITECTURE
3.1 System Overview
• Client Side:
– Users maintain and compress their personal PEFT adapters
locally

– Can compress single or multiple LoRA adapters into one
unified compressed representation

– Users can use any training method but must compress
their adapters before submission

• Inference Server:Dynamicallymanages compressed adapters
using LoRAX for efficient serving, handling thousands of
concurrent requests

3.2 Compression Approach
The compression process is central to SOPPU’s efficiency. Users can
input one or more LoRA adapters (𝑛 ≥ 1), which are compressed
into a single unified representation using joint diagonalization.

The algorithm efficiently handles both single andmultiple adapter
scenarios:

• Single Adapter (𝑛 = 1): Direct compression while preserv-
ing adapter functionality
• Multiple Adapters (𝑛 > 1): Joint compression finding
shared bases across adapters, enabling more efficient storage
and serving

3.3 Dynamic Serving
For serving, we leverage LoRAX to manage adapter loading and
inference:

• Adapter Scheduling: Efficiently loads and unloads com-
pressed adapters
• Request Batching:Combines requests using the same adapter
• Memory Management: Optimizes GPU memory usage
across adapters

4 EXPERIMENTAL RESULTS
4.1 Compression Performance
• Reduced parameters from 1,703,936 to 856,064
• Achieved 1.99x compression ratio
• 49.7% memory savings across adapters

https://tinyurl.com/yrpb9kd3


DAI’24, December 18–22, 2024, Singapore

Algorithm 1 SOPPU Adapter Compression

Require: Set of LoRA adapters {(𝐴𝑖 , 𝐵𝑖 )}𝑛𝑖=1, target rank 𝑟
Ensure: Compressed adapters with shared bases
1: Extract and group adapter layers by shape dimensions
2: for each layer group do
3: 𝑚,𝑘 ← shape of 𝐵𝑖
4: 𝑛 ← input dimension of 𝐴𝑖

5: 𝑟 ← min(𝑟, 𝑘,𝑚, 𝑛)
6: Initialize random𝑈 ∈ R𝑚×𝑟 , 𝑉 ∈ R𝑛×𝑟

7: Orthogonalize𝑈 ,𝑉 via QR decomposition
8: for iteration 𝑡 = 1 to 𝑇 do
9: 𝑀 ← ∑

𝑖 𝐵𝑖𝐴𝑖𝑉𝑉
𝑇𝐴𝑇

𝑖
𝐵𝑇
𝑖

10: Update𝑈 via QR decomposition of𝑀
11: 𝑁 ← ∑

𝑖 𝐴
𝑇
𝑖
𝐵𝑇
𝑖
𝑈𝑈𝑇𝐵𝑖𝐴𝑖

12: Update 𝑉 via QR decomposition of 𝑁
13: end for
14: for each adapter 𝑖 in group do
15: Σ𝑖 ← 𝑈𝑇𝐵𝑖𝐴𝑖𝑉

16: Store (𝑈 , Σ𝑖 ,𝑉
𝑇 ) as compressed representation

17: end for
18: end for

Figure 1: Reconstruction errors across layers showing mean
errors (blue bars) and individual errors (dots). Early layers
(0-5) show lower errors compared to later layers (11-15), with
query projections consistently showing higher reconstruc-
tion errors than value projections.

4.2 Compression Analysis
We analyze reconstruction errors across 32 adapter layers in our
compression process. Figure 1 shows the layer-wise reconstruction
errors for query and value projections.

Key observations from our analysis:
• Early layers (0-5) show mean errors in the 30-50 range
• Middle layers (6-10) demonstrate moderate errors of 40-60
• Later layers (11-15) exhibit higher errors of 60-80
• Query projections consistently show higher reconstruction
errors than value projections
• Standard deviations average approximately 1.7x the mean
errors

Layer 0 provides a representative example of the query vs value
projection pattern:
• Query projection: 67.61 mean error (std: 115.96)

• Value projection: 29.70 mean error (std: 50.29)
This analysis suggests that early layers maintain better recon-

struction quality, while deeper layers may benefit from different
compression strategies or reduced compression ratios.

5 DISCUSSION AND FUTUREWORK
5.1 Compression Trade-offs
• Higher layers show increased reconstruction errors
• Query projections are more sensitive to compression
• Early layers better preserve information
• Standard deviation patterns suggest non-uniform compres-
sion impacts

5.2 Future Directions
(1) Layer-adaptive compression ratios based on observed error

patterns
(2) Enhanced reconstruction techniques for query projections
(3) Improved memory management strategies for adapter serv-

ing

6 CONCLUSION
SOPPU presents a novel framework for scalable, personalized AI
that enables efficient serving of compressed personal adapters. Our
approach achieves significant compression (1.99x) while maintain-
ing adapter functionality, enabling practical deployment of person-
alized LLMs. The systematic analysis of layer-wise compression
behavior provides insights for future optimization, while integra-
tion with LoRAX enables efficient serving at scale.

REFERENCES
[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. 2020. Language Models are Few-Shot Learners. Advances in Neural Informa-
tion Processing Systems 33 (2020), 1877–1901.

[2] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2017. A Survey of Model
Compression and Acceleration for Deep Neural Networks. arXiv preprint
arXiv:1710.09282 (2017).

[3] Rickard Brüel Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen,
Kristjan Greenewald, Mikhail Yurochkin, and Justin Solomon. 2024. Compress
then Serve: Serving Thousands of LoRA Adapters with Little Overhead. arXiv
preprint arXiv:2402.04371 (2024).

[4] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the Knowledge in a
Neural Network. arXiv preprint arXiv:1503.02531 (2015).

[5] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. LoRA: Low-Rank Adaptation of Large
Language Models. arXiv preprint arXiv:2106.09685 (2021).

[6] Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong Wang, Jack Hessel, Luke
Zettlemoyer, Hannaneh Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu. 2023.
Personalized Soups: Personalized Large Language Model Alignment via Post-hoc
Parameter Merging. arXiv preprint arXiv:2310.11564 (2023).


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Parameter-Efficient Fine-tuning
	2.2 Adapter Compression and Serving

	3 SOPPU Architecture
	3.1 System Overview
	3.2 Compression Approach
	3.3 Dynamic Serving

	4 Experimental Results
	4.1 Compression Performance
	4.2 Compression Analysis

	5 Discussion and Future Work
	5.1 Compression Trade-offs
	5.2 Future Directions

	6 Conclusion
	References

