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ABSTRACT

Many real-world problems can be formulated as a constrained
Traveling Salesman Problem (TSP). However, the constraints are
always complex and numerous, making the TSPs challenging to
solve.When the number of complicated constraints grows, it is time-
consuming for traditional heuristic algorithms to avoid illegitimate
outcomes. Learning-based methods provide an alternative to solve
TSPs in a soft manner, which also supports GPU acceleration to
generate solutions quickly. Nevertheless, the soft manner inevitably
results in difficulty solving hard-constrained problems with learn-
ing algorithms, and the conflicts between legality and optimality
may substantially affect the optimality of the solution. To overcome
this problem and to have an effective solution against hard con-
straints, we proposed a novel learning-based method, MUSLA, that
uses multi-step looking-ahead information as the feature to improve
the legality of TSP with TimeWindows (TSPTW) solutions. Besides,
we constructed TSPTW datasets with hard constraints in order to
accurately evaluate and benchmark the statistical performance of
various approaches, which can serve the community for future
research. With comprehensive experiments on diverse datasets,
MUSLA outperforms existing baselines and shows generalizability
potential.

CCS CONCEPTS

• Computing methodologies → Machine learning; Artificial
intelligence.
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1 INTRODUCTION

NP-hard combinatorial optimization problems play a vital role in
modern practical applications and industries. In the real world,
problems are always attached to a set of complex constraints, mak-
ing them challenging to solve. Typically, the constraints in com-
binatorial optimization problems include hard and soft ones. Soft
constraints tolerate slightly violating the constraints in a small
range, whereas hard constraints strictly prohibit any violation.

In this paper, we focused on the set of popular Traveling Sales-
man Problems (TSPs), which are described as asking a salesman to
visit each city with minimizing the total length of the tour. This sce-
nario is commonly used in profit optimization in industrial produc-
tion procedures. Considering different kinds of constraints, there
are many variants of TSPs. For instance, Traveling Salesman Prob-
lems with time windows (TSPTW) is a famous hard-constrained
variant of TSP in the vehicle routing problem (VRP) family, which
constrains the salesman from visiting each city in a particular range
of time and meanwhile minimizes the total length of the tour; In
comparison, the capacitated vehicle routing problem (CVRP) puts
soft constraints on TSP which require multiple salesmen, also called
vehicles, with limited carrying capacity to deliver items to various
locations.

Traditional heuristic searching approaches, such as LKH3 [8],
traverse a large number of solutions and search for the best one
that satisfies the constraints. The Searching method guarantees
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finding feasible solutions under arbitrary constraints. However,
searching-based algorithms require a well-designed heuristic func-
tion for a specific problem and consume a lot of time to search for
different solutions for a new problem instance. In order to improve
efficiency, recent work has turned to machine learning techniques
that construct end-to-end solvers to generate high-quality solutions
in a few trials and allow GPU acceleration to improve efficiency
further. However, limited trials make it difficult for these solvers to
find a feasible solution. Therefore, solving hard constraints with
learning-based approaches becomes more challenging.

In order to deal with hard constraints, most learning-based meth-
ods train an end-to-end solver in the RL paradigm and relax the
time windows as soft constraints [22] or solve a soft-constrained
variant of TSPTW, e.g., Traveling Salesman Problem with Time
Windows and Rejections [27]. In contrast to RL methods requiring
elaborate reward designs and millions of environment interactions,
supervised learning (SL) can be easily trained with fixed offline
expert datasets, which is more practical for real-world problems.
However, SL was only used to solve regular TSPs in earlier re-
search [9, 18, 25, 26], but it is rarely used for constrained ones.
Challenges, such as obtaining information about constraint bound-
aries from expert data, prevent applying the SL method to hard-
constrained TSPs.

In this paper, we proposed a novel algorithm named MUlti-
Step Look-Ahead (MUSLA) to efficiently resolve one of the hard-
constrained TSPs, TSPTW. In detail, MUSLA introduced a novel
one-step look-ahead way to gather future information regarding
constraint boundaries and train a policy 𝜋+1 by imitating an expert.
Based on the well-trained policy, we augment expert datasets with
multi-step look-ahead information collection. The gathered infor-
mation about future situations provides a better perception of the
constraint boundaries. With the enhanced dataset, we further train
the MUSLA policy 𝜋+𝑚 .

In a nutshell, our main technical contributions are threefold:

• We propose MUSLA, which includes a novel looking-ahead
mechanism based on supervised learning methods. MUSLA
enhanced optimality and legality of SL solutions by augmenting
datasets with searched information.
• We design two kinds of TSPTW datasets to evaluate the perfor-
mance of solvers better.
• Compared to state-of-the-art work with RL paradigm, MUSLA
outperforms other baselines and has a good balance between
solution quality and validation rates.

2 RELATEDWORK

Recent learning-based work solved TSP and its variants in a rein-
forcement learning paradigm. Graph Neural Networks [4, 13, 24]
and Attention mechanism [23] are the major architectures in state-
of-the-art work. Kim et al. [12], Kwon et al. [15] leverage sym-
metricities to improve the generalization capability of learning-
based solver. Recent work [24] has achieved comparable perfor-
mance to traditional methods on a scale of no more than 200 nodes.
On large-scaled TSPs, learning-based methods even demonstrated
faster execution with slightly dropped performance [7]. In the RL
architecture, the learning-based policy trials and errors in sampled

problem instances and updates the policy according to reward sig-
nals. The reward function is usually set to be the negation of the
tour length.

For constrained TSP, such as Traveling Salesman Problem with
Time Windows, solving constraints is treated as another optimiza-
tion objective, which brings challenges to learning-based methods.
Ma et al. [17] proposed a hierarchical RL policy to separate con-
straints from original optimization objectives. Alharbi et al. [1] used
a complex hybrid network architecture to improve solution quality.
Another feasible option is to solve reductions of TSPTW. Tang et
al. [22] relaxed time windows as soft constraints, and Zhang et al.
[27] solved a soft-constrained variant of TSPTW. Other methods
overcome the challenge of constraints by combining learning-based
methods with traditional algorithms [5, 19, 28], but at the cost of
the computational burden. For RL approaches, there are usually
two drawbacks to solving constrained TSP. One is the additional
objective requires well-designed reward shaping to balance legality
and optimality. The other is that RL methods require a lot of trial-
and-error and interactions with the environment during training,
resulting in high training costs especially for real-world problems.

Supervised learning (SL) is an alternative learning-based method
to solve TSP [9, 18, 25, 26]. The SL policy is trained on datasets
labeled by experts, thus avoiding additional trial and error and
reward design. Recent work usually uses exact algorithm [2, 21]
and heuristic algorithms [8] as oracles to generate the datasets.

3 PROBLEM FORMULATION

3.1 Traveling Salesman Problem with Time

Windows

We first introduce the traveling salesman problem with time win-
dows (TSPTW) and describe the challenge in a hard-constrained
setting. Consider a symmetric complete graph G = (𝑉 , 𝐸), where
the set of nodes 𝑉 = {0, 1, . . . , 𝑛} denotes the set of cities, and the
set of edges 𝐸 ⊂ 𝑉 ×𝑉 denotes the set of paths between every two
cities. Each city 𝑖 ∈ 𝑉 has two attributes, the 2-D coordination 𝑎𝑖
and the visiting time window [𝑡𝑠

𝑖
, 𝑡𝑒
𝑖
]. The length of edge 𝑒𝑖, 𝑗 ∈ 𝐸 is

𝐿𝑖, 𝑗 = | |𝑎𝑖 − 𝑎 𝑗 | |2, where | | · | |2 is the 𝑙2 norm. The goal of TSPTW
is to minimize the distance of the total path by asking the salesman

to visit all the cities exactly once and return to the start city under
the constraint that each city must be visited within the given time
window. A formal definition is as follows:

min
𝑋={𝑥0,𝑥1,𝑥2,...,𝑥𝑛 }

𝐿𝑥𝑛,𝑥0 +
𝑛−1∑︁
𝑖=0

𝐿𝑥𝑖 ,𝑥𝑖+1

s.t. 𝑡𝑠𝑥𝑖 ≤ 𝑡𝑖 ≤ 𝑡𝑒𝑥𝑖 ,

𝑡𝑖 = max{𝑡𝑖−1 + 𝐿𝑥𝑖−1,𝑥𝑖 , 𝑡𝑠𝑥𝑖 }

(1)

where 𝑋 is a solution tour, and 𝑡𝑖 is the time to visit city 𝑥𝑖 . For
simplicity, we presume the speed number is equal to 1 and exclude
the speed element from the calculation. A legal 𝑋 is a permutation
of nodes, indicating 𝑥𝑖 ≠ 𝑥𝑖′ ,∀𝑖 ≠ 𝑖′. Without loss of generality, we
assume 𝑥0 = 0 and traveling time between 𝑥𝑖 , 𝑥𝑖+1 is 𝐿𝑥𝑖 ,𝑥𝑖+1 .

A hard constraint is one that must be satisfied at all times. It is
notable that 𝑡𝑖 ≤ 𝑡𝑒𝑥𝑖 is a hard constraint, while 𝑡𝑖 ≥ 𝑡𝑠𝑥𝑖 is not. If
city 𝑥𝑖 is visited before the earliest time constraint 𝑡𝑠𝑥𝑖 , the salesman
should wait until 𝑡𝑠𝑥𝑖 , i.e., 𝑡𝑖 = max{𝑡𝑖−1 + 𝐿𝑥𝑖−1,𝑥𝑖 , 𝑡𝑠𝑥𝑖 }.
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The goal of the TSPTW could also be minimizing the total tour
duration, also called make-span, rather than the distance of the
tour [11]. However, optimizing toward the make-span optimality
may also reduce violations of constraints. It is difficult to design a
reasonable evaluation dataset with the goal of make-span to clarify
the model’s ability to balance optimality and legality, which makes
us ignore this situation.

As a hard-constrained problem, TSPTW is commonly regarded
as a multi-objective problem in current learning-based paradigms.
The optimal objective minimizes the tour distance and the legal
objective minimizes the violation of constraints. In contrast to the
soft-constrained problem where legality is considered a secondary
optimization objective, optimality and legality should share the
same status in a hard-constrained setting. Different from other
constrained combinatorial optimization problems, such as CVRP
and Vehicle Routing Problem with Time Windows (VRPTW), the
legality of the solution in TSPTW can not be satisfied by feasible
masking.

3.2 Supervised Learning with Route

Construction

In recent learning-based work, solutions of TSP and its variants
are modeled as an 𝑛-step route construction process [14]. Simi-
lar to the process of salesman travel, the solution sequence 𝑋 is
generated step by step in order with a learning-based policy 𝜋𝜃 .
Given the current partial tour 𝑋0:𝑖 = {𝑥0, . . . , 𝑥𝑖 } and property of
problem instance 𝑔, policy 𝜋𝜃 captures 𝑝 (𝑥 ′ |𝑋0:𝑖 , 𝑔), i.e., the proba-
bility of visiting the next node 𝑥𝑖 at step 𝑖 . After 𝑛 steps of route
construction, the solution tour 𝑋 = {𝑥0, 𝑥1, . . . , 𝑥𝑛} is given by
𝑝 (𝑋 |𝑔) = ∏𝑛−1

𝑖=0 𝑝 (𝑥𝑖+1 |𝑋0:𝑖 , 𝑔).
In order to train the policy 𝜋𝜃 , an expert dataset D is required,

which includes multiple pairs of TSPTW instances 𝑔 and expert
solutions 𝑋 ∗. For each problem instance 𝑔 ∼ D, the expert solution
𝑋 ∗ is generated by a high-quality expert solver 𝑋 ∗ = 𝜋expert (𝑔).
Hence the policy is trained to imitate the expert policy, whose
objective, written formally, is maximum likelihood estimation:

min
𝜃

Loss(𝜃 ) = − log𝑝𝜋𝜃 (𝑋 = 𝑋 ∗ |𝑔). (2)

4 METHODOLOGY

In this section, we introduce our looking-ahead method for TSPTW.
The pipeline of training is visualized in Figure 1. At first, we redesign
dynamic features for TSPTW and add a dynamic encoder module
for our SL model. Then, we augment the expert dataset with the
one-step look-ahead mechanism and train a supervised learning
policy 𝜋+1

𝜃
. Utilizing the policy, we gathered multi-step look-ahead

(MUSLA) information to refine the expert datasets further and train
the MUSLA policy 𝜋+𝑚

𝜃
. Finally, we introduce a technique that

can better adapt MUSLA policy to specific problem instances at
inference time by modifying dynamic information.

Our method employs supervised learning instead of reinforce-
ment learning due to two primary factors. At first, RL requires
additional reward shaping to balance the optimality and legality
of solutions. Secondly, applying MUSLA to RL necessitates the re-
peated collection of augmented information throughout the entire
learning process, resulting in an unacceptable computing burden.

Expert Dataset
(Expert Solutions)

OSLA Dataset
(One-Step Look-Ahead)

MUSLA Dataset
(Multi-Step Look-Ahead)

Generate Train Train

Augment Augment

Figure 1: Method pipeline of MUSLA. We labeled expert

datasets with LKH3 solutions in order to train a faster

learning-based solver. With one-step look-ahead augmented

datasets, we trained OSLA policy 𝜋+1. OSLA policy directed

further multi-step look-ahead data augmentation, resulting

in MUSLA policy 𝜋+𝑚 .

4.1 Learning with Dynamic Information

We consider a supervised learned policy 𝜋𝜃 using existing expert
datasets, which consists of an encoder and a decoder. The encoder
receives path-building information and generates embedding, and
the decoder takes embedding as input and generates subsequent
nodes. Similar to Alharbi et al. [1], 𝜋𝜃 takes static information
𝐼𝑠 (𝑔) = {𝑎𝑖 , 𝑡𝑠𝑖 , 𝑡

𝑒
𝑖
} and history embedding 𝐼ℎ (𝑋0:𝑖 ) of the current

tour 𝑋0:𝑖 as input. However, this does not explicitly describe each
possible next node 𝑥 ′ on current solution 𝑋0:𝑖 . It may cause cumu-
lative errors in the time and distance for the next step selection,
resulting in incorrect estimation for time window constraints. To al-
leviate this challenge, we design an additional dynamic node feature
𝐼𝑑 (𝑋0:𝑖 , 𝑥 ′, 𝑔). In particular, the dynamic feature of each unvisited
node 𝑥 ′ ∈ 𝑉 \𝑋0:𝑖 includes differences between 𝑥𝑖 and 𝑥 ′ in location
and time dimensions. For example, in location dimension, features
{𝐿𝑥 ′,𝑥𝑖 , 𝑎𝑥 ′ − 𝑎𝑥𝑖 } describe the distance and direction between 𝑥 ′

and current node 𝑥𝑖 . In time dimension, features {𝑡𝑠
𝑥 ′−𝑡𝑖 , 𝑡

𝑒
𝑥 ′−𝑡𝑖 } de-

scribe the time difference between time windows of 𝑥 ′ and 𝑥𝑖 . With
dynamic information, visiting probability of the next node 𝑥 ′ can be
written as 𝑝 (𝑥 = 𝑥 ′ |𝑋0:𝑖 , 𝑔) = 𝜋𝜃 (𝑥 ′, 𝐼𝑠 (𝑔), 𝐼ℎ (𝑋0:𝑖 ), 𝐼𝑑 (𝑋0:𝑖 , 𝑥 ′, 𝑔)).
In the subsequent representations, we streamline 𝐼𝑠 and 𝐼ℎ , resulting
in the simplification of the policy as 𝜋𝜃 (𝑥 ′, 𝐼𝑑 ). Details of feature de-
sign and model architecture are further described in supplementary
materials.

4.2 Dataset Augmentation

Different from soft-constrained settings, violations of hard con-
straints result in complete failure. Hence, the major challenge of
solving a hard-constrained TSPTW with the supervised learning
policy 𝜋𝜃 is to learn implicit information about constraint bound-
aries. Since only the legal solutions are preserved in expert datasets,
the learned policy may lack sufficient information to determine
when the time constraints are violated. To provide constraint infor-
mation and train a robust policy, our solution is to augment datasets
using a look-ahead mechanism. Depending on the expanded step,
we introduce the one-step look-ahead mechanism, based on which
we further propose the multi-step look-ahead mechanism.
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(b) One-Step Look-Ahead (c) Multi-Step Look-Ahead

𝑖 + 1

𝑥𝑖

𝑥′′

𝑥′

𝑥𝑖

𝑥′′

𝑥′

𝑖

𝑖 + 2

𝑖 + 3

෤𝑥𝑖+2 ∼ 𝜋+1

Gather 𝐼+1
𝑑

Gather 𝐼+2
𝑑

𝑥𝑖

𝑥′

(a) Rout Construction

Figure 2: Illustration of the multi-step look-ahead mechanism for𝑚 = 1. Subfigure (a) shows the route construction at step 𝑖.

Subfigures (b) and (c) illustrate the process of information gathering. Orange nodes have been determined to be in the current

route 𝑋0:𝑖 . Blue nodes are temporarily added to the route during the search. Future information is gathered from green points.

Figure 2 presents a schematic diagram of our approach. To as-
certain if node 𝑥 ′ should be the next node, we can enumerate all
feasible routes that include 𝑥 ′ by brute force. However, this ap-
proach is obviously impractical given the vast number of potential
solutions. Hence, based on node 𝑥 ′, we try𝑚 subsequent steps to
construct an illusory partial solution with a length of 𝑖 + 1 +𝑚. By
exploring several illusory partial solutions of 𝑥 ′, we gather𝑚-step
look-ahead information 𝐼𝑑+𝑚 as the policy’s input.

4.2.1 One-Step Look-Ahead. We start from the one-step look-ahead
(OSLA) mechanism. OSLA expands information on each node by
trying to construct solutions one step ahead. At step 𝑖 , we iterate
each unvisited node 𝑥 ′ to construct an illusory 𝑖 + 1 partial solution
𝑋 ′ = {𝑥0, . . . , 𝑥𝑖 , 𝑥 ′} and gather information for all unvisited node
𝑥 ′′ ∈ 𝑉 \ 𝑋 ′ based on the imaginary 𝑖 + 1 step. The gathered infor-
mation 𝐼𝑑+1 (𝑋

′, 𝑔) is used as additional dynamic features of node 𝑥 ′
and helps determine the probability of choosing 𝑥 ′ at the current
step.

More specifically, the OSLA information includes two types of
value. In the first type of feature, we select the set of nodes that are
already to be late, i.e. 𝑋 ′′late = {𝑥

′′ ∈ 𝑉 \𝑋 ′ |𝑡𝑖+1 +𝐿𝑥 ′,𝑥 ′′ > 𝑡𝑒
𝑥 ′′ }. We

used the number of late nodes |𝑋 ′′late | and the maximum late time
as features to capture the constraint violations of selecting 𝑥 ′. In
the second type of feature, assuming 𝑋 ′′late = ∅, we add distance
and time overhead when greedily visiting node 𝑥 ′′ with minimum
time overhead.

With the OSLA information as additional input, we can train an
OSLA policy 𝜋+1

𝜃
(𝑥 ′, 𝐼𝑑 , 𝐼𝑑+1) by supervised learning which is able

to learn constraint boundaries by possible timeouts in the future.
It is notable that future information is gathered based on expert
solutions and does not impose an additional burden on the training
process.

4.2.2 Multi-Step Look-Ahead with An OSLA Policy. Searching with
one step helps to capture the constraint boundaries, but the col-
lected information is still limited. The effect of a choice may require
successive attempts to judge. To gather more guidance information
from the future at an acceptable computational cost, we propose
a multi-step look-ahead (MUSLA) mechanism to augment expert
datasets further.

As the number of steps increases, potential solutions increase ge-
ometrically. In order to ensure the feasibility of calculating, we
leveraged a pre-trained OSLA policy to screen for meaningful
choices. Different from one-step augmentation, we only gather
future information for the top 𝑘 nodes 𝑥 ′ with the highest prob-
ability of expert selection. Here we use policy 𝜋+1

𝜃
as an approxi-

mation to the expert strategy. For a specific node 𝑥 ′, we continu-
ally construct𝑚 steps to get an illusory 𝑖 + 1 +𝑚 partial solution
𝑋̃ ′ = {𝑥0, . . . , 𝑥𝑖 , 𝑥 ′, 𝑥𝑖+2, . . . , 𝑥𝑖+1+𝑚}. After augmentation, we also
gather information 𝐼𝑑+2 (𝑋̃

′, 𝑔) for all unvisited node 𝑥 ′′ ∈ 𝑉 \ 𝑋̃ ′ as
the MUSLA features of 𝑥 ′.

This paper used a hyper-parameter setting of 𝑘 = 5,𝑚 = 1
to gather multi-step features. Augmenting expert datasets with
dynamic features 𝐼𝑑 , 𝐼𝑑+1and 𝐼𝑑+2, we train the MUSLA policy, for-
mulated as 𝜋+2

𝜃
(𝑥 ′, 𝐼𝑑 , 𝐼𝑑+1𝐼

𝑑
+2).

4.3 Trade-off between Optimality and Legality

After training on augmented expert datasets, we obtain a robust
MUSLA policy that balances optimality and legality. However, by
modifying dynamic features, we can still adjust the balance of the
two goals and adapt to specific TSPTW instances at the inference
stage. For example, for a problem instance with tight time windows,
the model might give an illegal tour that times out slightly. By
modifying the tour time 𝑡𝑖 with 𝑡 ′𝑖 = 𝑡𝑖+𝜖 , the dynamic feature of the
remaining time to reach a node 𝑡𝑒

𝑥 ′−𝑡
′
𝑖
becomes smaller, so themodel

adopts a more conservative strategy to avoid timeouts. Following
this idea, we extend MUSLA to MUSLA-adapt. MUSLA-adapt tries
different time offset values 𝜖 ∈ E during inference and chooses
the optimal legal solution as the final solution. Specifically, our
experiments use E = {−2,−1,−0.5, 0, 0.5, 1}. Algorithm 1 describes
the route construction process of MUSLA-adapt.

5 IMPLEMENTATION: NETWORK

STRUCTURE AND DATASETS

In this section, we introduce the implementation details of MUSLA,
including network structure and datasets. For the network structure,
we encode the gathered information using a transformer and graph
network. We also create two kinds of TSPTW datasets, Medium
and Hard, to demonstrate the effectiveness of our method.
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Algorithm 1:Multi-Step Look-Ahead Adapt

1 Function MUSLA-adapt(𝜋+1
𝜃
, 𝜋+2

𝜃 ′
, E):

2 for 𝜖 ∈ E do

3 Initialize 𝑋 ← {0} ;
4 for 𝑖 = 0 to 𝑛 − 1 do
5 Construct dynamic featrue 𝐼𝑑 based on 𝑋, 𝜖 ;
6 𝐼𝑑+1 ← OslaGather(𝑋, 𝜖) ;
7 Calculate probability 𝑝 (𝑥 ′) ← 𝜋+1

𝜃
(𝑥 ′, 𝐼𝑑 , 𝐼𝑑+1) ;

8 𝐼𝑑+2 ← MuslaGather(𝑋, 𝑝, 𝜖) ;
9 Calculate 𝑝 (𝑥 ′) ← 𝜋+2

𝜃 ′
(𝑥 ′, 𝐼𝑑 , 𝐼𝑑+1, 𝐼

𝑑
+2) ;

10 𝑋 ← 𝑋 ⊕ {𝑥 ′}, 𝑥 ′ = argmax𝑥 ′ 𝑝 (𝑥 ′) ;
11 end

12 Update best solutions
𝑋best ← SelectBetter(𝑋,𝑋best) ;

13 end

14 return best solutions 𝑋
best

;

15 Function OslaGather(𝑋, 𝜖):

16 Initialize 𝐼𝑑+1 ;
17 foreach node 𝑥 ′ ∈ 𝑉 \ 𝑋 do

18 𝑋 ′ ← 𝑋 ⊕ {𝑥 ′} ;
19 Update 𝐼𝑑+1 based on 𝑋 ′ and 𝜖 ;
20 end

21 return OSLA feature 𝐼𝑑+1 ;

22 Function MuslaGather(𝑋, 𝑝, 𝜖):

23 Initialize 𝐼𝑑+2 ;
24 𝑉𝑠 ← {𝑥 ′ with first 𝑘-th highest 𝑝 (𝑥 ′)} ;
25 foreach node 𝑥 ′ ∈ 𝑉𝑠 do
26 𝑋 ′ ← 𝑋 ⊕ {𝑥 ′} ;
27 Update 𝐼𝑑+2 based on OslaGather(𝑋 ′, 𝜖) ;
28 end

29 return MUSLA feature 𝐼𝑑+2 ;

5.1 Network Structure

Following the recent learning-based TSP paper, such as Kool et al.
[14], the end-to-end policy 𝜋𝜃 consists of an encoder and decoder,
parameterized by 𝜃 . The encoder takes information needed to build
the path as input and produces embedding. Then decoder takes
embedding as input and produces the next node 𝑥𝑖 . Different from
recent works[1] which take static information {𝑎𝑖 , 𝑡𝑠𝑖 , 𝑡𝑒𝑖 } and his-
tory embedding of 𝑋0:𝑖 as input of policy, we additionally design
dynamic node features to describe current solution 𝑋0:𝑖 . Figure 3
presents the network structure of the policy.

In order to encode static, dynamic, and historical information,
we construct the encoder with three model structures. The first
part, the static graph encoder 𝑒𝑠 (·), encodes the graph structure of
the current TSPTW instance with graph attention networks [10].
The graph encoder aggregates neighbor information across nodes
and captures the graph structure of nodes for a specific TSPTW
instance 𝑔. However, the powerful graph neural network structure
also brings a huge computational overhead. In order to ensure
that encoding dynamic information at each step does not bring

too much computational burden, we apply the second part with
a node-wise MLP 𝑒𝑑 (·) for the dynamic node feature. Given the
embedding of encoded static and dynamic features at step 𝑖 as
ℎ𝑠𝑥 , ℎ

𝑖
𝑥 , the historical sequence of 𝑋0:𝑖 can be described as 𝐻0:𝑖 =

{(ℎ𝑠𝑥0 , ), (ℎ
𝑠
𝑥1 , ℎ

0
𝑥1 ), . . . , (ℎ

𝑠
𝑥𝑖
, ℎ𝑖−1𝑥𝑖

)}. As the third part of the encoder,
we use a Gated Transformer-XL [20] 𝑒ℎ (·) to model the historical
embedding sequence. The encoder can be formulated as follows,

ℎ𝑠 = 𝑒𝑠 (𝑔), ℎ𝑖𝑥 ′ = 𝑒𝑑 (𝑥 ′, ℎ𝑠 , 𝑋0:𝑖 ), ℎℎ𝑖 = 𝑒ℎ (𝐻0:𝑖 ). (3)

At each construct step 𝑖 , our model predicts the probability of
visiting each unvisited node with attention mechanism 𝑑 (·) and
soft-max. The queries come from historical embedding 𝐻0:𝑖 and
the keys and values come from the dynamic embedding ℎ𝑖

𝑥 ′ . The
formulation for the probability of node 𝑥 ′ at step 𝑖 can be written
as

𝑝 (𝑥 = 𝑥 ′ |𝑋0:𝑖 , 𝑔) =
𝑑 (ℎ𝑖

𝑥 ′ , ℎ
ℎ
𝑖
)∑

𝑗∈𝑉 \𝑋0:𝑖 𝑑 (ℎ𝑖𝑗 , ℎ
ℎ
𝑖
)
, 𝑥 ′ ∈ 𝑉 \ 𝑋0:𝑖 . (4)

5.2 Dataset with Hard-Constraints

In order to highlight the ability of the algorithm to balance optimal-
ity and legality, we create two kinds of TSPTW datasets, Medium
and Hard. Medium is designed with a clear random distribution
that increases the difficulty of satisfying the time window con-
straints. Hard is constructed in a complex way and aims to evalu-
ate the generalization ability of the model. The expert solutions of
our datasets are given by LKH3 solver [8] and we only discuss the
generation of problem instances 𝑔 ∼ 𝐷 in this section.

Traditional approaches, like LKH3, provide datasets with a lim-
ited number of problem instances, which is insufficient for training
learning-based algorithms. Most recent learning-based TSPTW
work did not follow a uniform way to generate data and ignored
the importance of dataset quality. Cappart et al. [5] and Ma et al.
[17] generated time windows following the visiting time 𝑡 ′

𝑖
of a

given solution 𝑋 ′. Their datasets give too strong prior assumptions
about the time window and also oversimplify this problem. A trivial
greedy policy that takes unvisited node 𝑖 with the smallest value
𝑡𝑠𝑥𝑖 is able to obtain a near-optimal solution with low violation of
constraints. Zhang et al. [27] generated datasets with pure random-
ization, but inappropriate parameter settings lead to the absence of
legal solutions for most problem instances.

We demonstrate detailed analysis in Appendix A. Based on the
weaknesses of previous works, we propose datasets with proper
constraints to highlight the challenge of balancing two objectives.

Medium dataset. Similar to Zhang et al. [27], we generate the
random dataset Medium by randomly sampling coordinates 𝑎𝑖 ,
time windows [𝑡𝑠

𝑖
, 𝑡𝑒
𝑖
] of 𝑛 + 1 nodes. The 2D-coordinates 𝑎𝑖 are

sampled uniformly in a grid ofU[0, 100]2. The time windows are
given by sampling start time 𝑡𝑠

𝑖
and width 𝑡𝑒

𝑖
− 𝑡𝑠

𝑖
uniformly:

𝑡𝑠𝑖 ∼ U[0,𝑇𝑛], 𝑡
𝑒
𝑖 = 𝑡𝑠𝑖 +𝑇𝑛 · U[𝛼, 𝛽] (5)

where 𝛼, 𝛽 are hyper-parameters, and𝑇𝑛 is the expected distance of
an arbitrary TSP tour on 𝑛+1 nodes. For 𝑛 = 20, a rough estimate of
𝑇𝑛 is 𝑇20 ≈ 10.9. By expanding the sampling range of the start time,
the size of the feasible solution set in the dataset can be effectively
limited, thus bringing conflicts between optimality and legality.
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Figure 3: Network structure of our policy.

Hard dataset. In order to guarantee the credibility of the eval-
uation, we add a more difficult dataset Hard. In this dataset, we
sample problem instances for training and evaluation from slightly
different distributions. This setting is similar to the real-world situ-
ation, and there is often a certain deviation between the training
and test scenarios. We test the model’s generalization ability to
different problem instances on this dataset.

In supplementary materials, we provide a detailed description
and pseudocode of these constructed datasets.

Supplementary training dataset. Due to the incapacity to iterate
through different problem instances in TSPTW, a learning-based
algorithm trained on fixed datasets tends to overfit or be unstable
when solving new problems. To alleviate the issue, we augment
variants of the aforementioned datasets to stabilize the model per-
formance. The supplementary dataset includes simplified datasets,
such as removing one or two sides of time windows, and also com-
plex datasets. For the purpose of elucidating our conclusion, we
trained our model on all dataset variants but only presented evalua-
tion results for Easy and Hard datasets. Details regarding additional
datasets are provided in supplementary materials.

6 EXPERIMENTS

In this section, we show empirical results of evaluating our method
onMedium andHard datasets with problem sizes of𝑁 = 20, 50, 100.
We begin by evaluating the two objectives, legality and optimal-
ity, of different models, and contrasting hard and soft constraints.
Then, we demonstrate the effect of various components of our
methodologies.

6.1 Setups

Evaluation metrics. In order to compare method performance
from different perspectives, we use four evaluation metrics:
• Illegal rate is the proportion of illegal solutions produced by the
algorithm in datasets, which reflects the legality of the solutions.
• Solution gap, i.e., optimality of solutions, is the gap between
solution distance 𝐿 and distance of expert solution, 𝐿expert, cal-
culated by (𝐿/𝐿expert − 1). In particular, we only calculate the
solution gap for legal solutions.
• Solving time, the execution time each algorithm takes to solve
1 000 problem instances.

• Total timeout, the sum of timeouts on each node.
All the metrics are evaluated on test sets consisting of 1 000 in-
stances.
Configuration. For fair comparisons, we evaluate solving time
on the same hardware configuration. Greedy policies and heuristic
policies execute on one Intel(R) Xeon(R) Platinum 8255C CPU @
2.50GHz (with 8 cores). Learning-based policies execute on one
NVIDIA GeForce RTX 3090. We trained the learning-based models
for 500 000 samples and 100 epochs. Hyperparameters for training
are listed in supplementary materials.
Baselines. We compare three types of baseline algorithms de-
scribed as follows.
• Heuristic baseline. We consider the state-of-art TSPTW solver,
LKH3 [8], as the oracle to calculate the solution gap and generate
datasets. Since we screened out a few instances that LKH3 cannot
solve, the illegal rate of LKH3 is 0%.
• Greedy baselines. We provide two trivial rule-based greedy
policies as poor baselines. Their results may be regarded as fair
lower bounds of solver performance. Greedy policies follow the
route construction process to generate the solution. At each step,
Minimum time-consuming greedy (Greedy-MT) chooses the node
with the minimum arrival time to visit. The calculation of arrival
time includes the waiting time for the earliest access time 𝑡𝑠

𝑖
.

Minimum latest access time greedy (Greedy-LT) chooses the node
with the minimum latest access time 𝑡𝑒

𝑖
.

• Learning-based baselines. As mentioned in Section 5, most of
the recent learning-based TSPTW approaches are evaluated on
inconclusive datasets and did not release available code. We se-
lected two RL works solving similar problems for our comparison.
Both works provide open-source code. JAMPR [6] is the state-of-
art for Vehicle Routing Problem with Time Windows (VRPTW),
a variant of TSPTW with multiple salesmen. We adapt JAMPR
for the TSPTW by removing additional constraints and allowing
only one salesman. JAMPR resolves the VRPTW by successively
constructing multiple routes and masking all timeout nodes for
the current route. In TSPTW, the only route must visit every
node without exceeding the timeout limit, and there is no simple,
feasible masking that can be used to avoid the timeout. The other
method is AM [14], which is a well-known route construction
method. We adapt AM for TSPTW with additional time-window
[𝑡𝑠
𝑖
, 𝑡𝑒
𝑖
] features as input. The TSPTW solutions adhere to a fixed

order, thereby rendering algorithms that rely on solution sym-
metry, such as POMO [15], inapplicable to the TSPTW problem.
The total reward function 𝑅 for RL algorithms consists of route
length, timeout period, and the number of timeout nodes,

𝑅 = 𝑅route_length + 𝑅total_timeout + 𝑅number_of_timeout_nodes .

6.2 Results and Analysis

Table 1 shows the experimental results on Medium and Hard
datasets. Overall, on different types and sizes of datasets, MUSLA
and MUSLA-adapt outperforms other learning-based baselines by
a large margin on the solution gap. However, many of the base-
lines show extreme imbalances in experiments. While all generated
routes are legal, imbalanced policies show a large gap in optimality
compared to the expert baseline. In order to better evaluate the
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Table 1: The result table compares the performance of our model with other baselines.

Methods Medium Hard Time(s)
Illegal(%) Gap(%) Timeout Illegal(%) Gap(%) Timeout

𝑁 = 20

LKH3 0.00 0.00 0.00 0.00 0.00 0.00 0.2
Greedy-MT 0.00 95.97 0.00 12.50 51.70 7.48 0.27
Greedy-LT 0.00 128.82 0.00 5.13 168.57 4.70 0.08

AM 5.34 16.22 0.03 83.00 52.13 5.15 0.28
JAMPR 0.00 116.02 0.00 8.29 74.31 15.56 6.03

MUSLA 𝜋+2 3.73 5.33 0.26 5.20 12.10 0.26 3.30
MUSLA adapt 0.20 4.02 0.24 0.40 10.25 0.10 19.72

𝑁 = 50

LKH3 0.00 0.00 0.00 0.00 0.00 0.00 11.64
Greedy-MT 0.00 196.12 0.00 18.64 69.08 25.33 0.27
Greedy-LT 0.00 257.49 0.00 17.19 311.07 89.21 0.08

AM 9.90 32.68 0.09 49.50 65.88 9.08 0.27
JAMPR 0.00 249.03 0.00 1.31 207.10 0.88 7.30

MUSLA 𝜋+2 8.20 7.32 1.80 18.90 16.71 4.42 7.63
MUSLA adapt 0.10 5.63 0.99 3.10 15.24 2.22 45.97

𝑁 = 100

LKH3 0.00 0.00 0.00 0.00 0.00 0.00 7588.75
Greedy-MT 0.00 314.04 0.00 20.42 79.25 36.03 0.30
Greedy-LT 0.00 409.62 0.00 30.02 468.76 408.18 0.08

AM 9.00 239.57 0.05 33.40 132.18 3.42 3.01
JAMPR 100.00 N/A 14.82 100.00 N/A 734.44 9.53

MUSLA 𝜋+2 18.60 14.60 24.81 50.50 37.05 96.39 58.83
MUSLA adapt 0.60 12.01 9.59 31.90 35.59 89.57 403.53

Table 2: Comparison for mentioned variants of our methods.

Methods Medium Hard Time(s)
Illegal(%) Gap(%) Timeout Illegal(%) Gap(%) Timeout

𝑁 = 50

Static 82.70 7.60 8.56 74.30 122.07 9.87 1.16
Dynamic 50.30 6.16 0.64 55.60 31.41 4.12 1.36
OSLA 𝜋+1 11.80 8.15 3.53 24.50 18.55 8.43 1.56
MUSLA 𝜋+2 8.20 7.32 1.80 18.90 16.71 4.42 7.63
MUSLA adapt 0.10 5.63 0.99 3.10 15.24 2.22 45.97

OSLA-Medium 26.80 12.22 6.12 39.10 43.46 6.84 1.56

ability of the algorithm to balance the two indicators, we use the
weighted score to quantify the performance. The weighted score 𝑆
is calculated by

𝑆 = 𝛾 · Illegal(%) + (1 − 𝛾) · Gap(%), (6)

where the balance weight 𝛾 determines the importance of the illegal
rate in 𝑆 . We visualize the weighted score of different algorithms
in Figure 4 varying the balance rate from 0 to 1.

For the two terms {𝛾, (1 −𝛾)} in the Equation 6, 1
10 to 10

1 should
be a reasonable scale range for ratio 𝛾/(1 − 𝛾), since the goal of
algorithms solving TSPTW is to optimize both of two objectives.
We highlight the range with dotted lines. In three different sizes of
problems, MUSLA-adpat keeps the lowest score within the reason-
able range. Although slightly worse than Greedy-MT in problem

scale of 𝑁 = 100, MUSLA outperforms other baselines in most cases.
In previous learning-based works, the weighted score is commonly
calculated as 𝑆 = 𝛾Timeout + (1 − 𝛾)Gap with a fixed value of 𝛾 .
We show the difference between timeout and illegal rate later.

On the Medium dataset, greedy solutions tend to have high le-
gality and low optimality; as for RL algorithms, a trivial strategy
such as Greedy-LT is easy to explore but may cause local-optimal
issues. In our training procedure, we do observe that the RL policy
maintains a similar performance as Greedy-LT for a long period.
Although AM eventually converges to comparable results in prob-
lem sizes of 𝑁 = 20, 50, it still shows an imbalance result within a
large-scale case. The performance of JAMPR is even worse, as it
does not improve the optimality much in all cases and totally fails
in cases where 𝑁 = 100. The imbalance between the two objectives
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(d) Hard, 𝑁 = 20
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0.0 0.2 0.4 0.6 0.8 1.0
Balance Weight 

10 1

100

101

102

W
ei

gh
t S

co
re

 S

Greedy-MT
Greedy-LT
AM
JAMPR
MUSLA +2

MUSLA-adapt

(f) Hard, 𝑁 = 100

Figure 4: Weighted score of different models. The dotted lines highlight reasonable ranges of 𝛾 .

shows the backwardness of RL algorithms. In contrast, the SL algo-
rithm naturally avoids learning imbalance strategies by imitating
high-quality expert datasets. In this way, SL methods learn towards
a single objective and can improve both optimality and legality
simultaneously.

As mentioned in Section 5, the training and evaluation instances
in the Hard dataset are sampled from different distributions. Com-
pared with other models, the illegal rate of AM increases with a
large margin compared with it in Medium, 𝑁 = 20, 50. The incre-
mented values are +77.66% and +39.60% respectively. The increases
for MUSLA and MUSLA-adapt are reasonable, which shows the
generalizability potential of our method.

On Medium dataset with a problem size of 𝑁 = 20, MUSLA
shows a lower illegal rate but a higher total timeout compared
with AM. Intuitively, minimizing the timeout should also minimize
the timeout rate. However, there is a difference between the two
objectives in fact. Replacing the legality indicator illegal rate by
total timeout, TSPTW is relaxed as a soft-constrained problem,
where solutions can tolerate minor timeouts. The experimental
results in Table 1 also illustrate the difference between the two
types of problems. This counter-intuitive result proves that our
method better models the hard-constrained problem, rather than
simply tuning the results on the original method.

When comparing LKH3 with MUSLA, it is seen that MUSLA only
exhibits shorter solution times for larger problem sizes. Although
MUSLA is not capable of completely replacing LKH, it serves as a

feasible alternative. For scenarios where rapid response is priori-
tized, MUSLA presents a viable option, allowing for flexibility in the
time-quality trade-off that real-world applications often necessitate.

6.3 Ablation Study

We conduct ablation experiments on a problem size of 𝑁 = 50 to
compare the effect of different components in our method. Corre-
sponding to Section 4, we set up five different models: Staticmodel
is a trivial supervised learning model with only static information
of TSPTW as input. Dynamic model adds dynamic information to
improve the model’s perception of the state of each step in the con-
struction process following Section 4.1. OSLA introduces the one-
step look-aheadmechanism for gathering information on constraint
boundaries following Section 4.2.1.MUSLA andMUSLA-adpat are
the multi-step look-ahead policy described in Section 4.2.2 and 4.3.
It is clear that each part of the method improves the performance.

We also show the help of diverse supplement training datasets.
OSLA-Medium is an OLSA model trained using only Medium
dataset. The evident decline in performance indicates that diverse
training datasets are necessary.

Compared with the heuristic method, learning-based policies
still have a gap in performance. However, with learning-based meth-
ods, we can obtain solutions faster at the cost of a slight decrease
in performance. According to the results in Table 1, MUSLA and
MUSLA-adapt can achieve a 129x and 19x speedup separately using
a single GPU at the problem size of 𝑁 = 100. To further reduce the
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solving time, OSLA, which has a reduced solution time and little
performance degradation, may be a viable alternative.

7 CONCLUSION

In this paper, we propose a novel and effective solution for a chal-
lenging hard-constrained variant of TSP, TSPTW, named multi-step
look-ahead (MUSLA). In particular, MUSLA is a supervised-learning
method that adopts the looking-ahead information as the feature to
improve the legality of TSP with TimeWindows (TSPTW) solutions.
To accurately evaluate and benchmark the statistical performance
of various approaches, we also construct TSPTW datasets with hard
constraints that can be used by the community to conduct follow-up
research. With comprehensive experiments, MUSLA demonstrates
great performance on diverse datasets, which is far better than
existing baselines.

The limitation of our work lies in the requirement for expert
datasets, whichmay be expensive to collect, especially in large-scale
cases. It is the major difficulty that prevents us from trying larger-
scale problems. In the future, we plan to improve the search strategy
of MUSLA to collect more critical information while reducing the
time-consuming. Utilizing suboptimal datasets generated by RL
methods could also be a potential direction to address the data
generation issues.
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APPENDIX

A WEAKNESSES OF EXISTING DATASETS

This section demonstrates the weakness of TSPTW instances gener-
ated by previous learning-based papers. The coordination of TSPTW
instances is sampled following uniform distribution, which is con-
sistent with TSP papers. Only the generation of time windows is
distinct. Alharbi et al. [1], Cappart et al. [5], Ma et al. [17] generate
time windows following the visiting time 𝑡 ′

𝑖
of a constructed solu-

tion 𝑋 ′. The route 𝑋 ′ is constructed following different methods.
Alharbi et al. [1], Ma et al. [17] construct route 𝑋 ′ as a near-

optimal TSP solution with learning-based and heuristic solver sep-
arately, which provides a too strong prior for the TSPTW instances.
The solutions for generated TSPTW instances are basically in line
with the solutions of TSP instances, i.e. TSPTW solvers can ignore
the time window constraints. In order to verify our speculation,
we generate a similar dataset, where route 𝑋 ′ is constructed by
greedily visiting the unvisited nearest neighbor. On this dataset, the
Greedy-MT baseline reaches Gap = 0.00% and Illegal = 0.00%. Cap-
part et al. [5] generate𝑋 ′ with a random permutation, which seems
a better choice. However, we test a greedy method that chooses the
node 𝑖 with the minimum earliest access time 𝑡𝑠

𝑖
, and the results

are Gap = 0.00%, Illegal = 3.32%.
Zhang et al. [27] generate problem instances on a relaxed variant

of TSPTW, called TSPTWR. The time windows are generated from
a random distribution. However, the constraints are too tight for
TSPTW. We generate problem instances following this paper and
solve them with LKH3, only 1% instances can find solutions.

B DATASETS

In this paper, we generate TSPTW datasets with sizes of 𝑛 =

20, 50, 100. For small problem sizes 𝑛 = 20, 50, the training datasets
consist of 500 000 problem instances. For big problem size 𝑛 = 100,
we only generated 50 000 TSPTW instances due to the long solution
time of LKH3. The data volume ratio for the Medium, Hard, and
supplementary training sets is 1 : 1 : 3. We generate Medium with
hyperparameter of 𝛼 = 0.5, 𝛽 = 0.75.

B.1 Hard Dataset

Training data. The training data of Hard samples time windows
is based on the random distribution of Medium. For a TSPTW
instance 𝑔 with the size of 𝑛, we select ⌊0.3𝑛⌋ nodes and divide
them into𝑛𝑔 groups. Each group of nodes regenerates timewindows
based on the random distribution of Medium and adds an offset
time on the time windows. More specifically, the generation process
consists of the following four steps.

(1) Sample time windows following Medium dataset.
(2) Randomly pick ⌊0.3𝑛⌋ nodes and divide them into 𝑘𝑝 groups.

For a problem size of 𝑛 = 20, the total number of groups is
𝑘𝑝 = 2. For problem sizes of 𝑛 = 50, 100, the total number of
groups is sampled from a range, 𝑘𝑝 ∼ U[2, 7].

(3) Individually resample time windows for each group follow-
ing distribution of Medium. In particular, the parameter 𝑇𝑛
for group with 𝑛𝑝 nodes is 𝑇𝑛=𝑛𝑝 .

(4) For a group 𝑝 , sample a start time 𝑡𝑝 from a uniform distribu-
tion, 𝑡𝑝 ∼ U[0,𝑇𝑛], then time windows of all nodes in this

group is shifted with value 𝑡𝑝 .

𝑡𝑠𝑖 ← 𝑡𝑠𝑖 + 𝑡𝑝 , 𝑡𝑒𝑖 ← 𝑡𝑒𝑖 + 𝑡𝑝 (7)

Evaluation data. Evaluation Hard data are generated using the
same method of training Hard data. The generation process of
evaluation data is modified in steps 1 and 3. At step 1, time windows
are constant values as 𝑡𝑠 = 0, 𝑡𝑒 = 𝑇𝑛 . At step 3, time windows are
constant values as 𝑡𝑠 = 0, 𝑡𝑒 = 𝑇𝑛=𝑛𝑝 .

B.2 Supplementary Training Datasets

Weakly constrained data. Medium and Hard datasets are de-
signed to have conflicts in legality and optimality, which makes
the learning-based policy are tends to generate legal solutions with
poor performance. Therefore, we added two weakly constrained
datasets based on Medium. The first dataset removes the constraint
of earliest accessing time, i.e. 𝑡𝑠

𝑖
= 0. The second dataset removes

both sides of time windows constraints, i.e. 𝑡𝑠
𝑖
= 𝑡𝑒

𝑖
= 0. For the

second dataset, the TSPTW instances are relaxed to TSP instances.

Grouped Medium data. Grouped Medium data is designed as a
supplementary of Medium and Hard. Similar to Hard training
data, the grouped Medium data divided all 𝑛 nodes into 𝑘𝑝 groups.
The shift value 𝑡𝑝 of time windows in i-th group 𝑝 is the maximum
value of 𝑡𝑒 in the (i-1)-th group, which ensures that time windows
from two different groups do not cover each other.

C FEATURE DESIGN

C.1 Static Features

Static features are designed to describe specific TSPTW instance
𝑔. Problem instance 𝑔 is a complete graph (𝑉 , 𝐸) consisting of the
node set𝑉 and the edge set 𝐸. The properties of nodes are described
with static node features, which are listed in Table 3. The properties
of edges are described with static edge features and are listed in
Table 4. In order to reduce the computational burden, we only retain
the top 20% nearest neighbors to add edge features for each node.

C.2 Dynamic Features

Dynamic features are designed to describe all unvisited nodes 𝑥 ′ ∈
𝑉 \𝑋0:𝑖 given a specific TSPTW instance 𝑔 and current partial tour
𝑋0:𝑖 . Dynamic features for node 𝑥 ′ are listed in Table 5, where 𝑡𝑖 is
the current time for partial tour 𝑋0:𝑖 .

C.3 Look-ahead Node Features

Following Section 4, we construct a look-ahead route 𝑋 ′ for node
𝑥 ′ and gather the look-ahead information 𝐼𝑑+1 or 𝐼

𝑑
+2 as look-ahead

node features of 𝑥 ′. The look-ahead information 𝐼𝑑+1 and 𝐼
𝑑
+2 have

the same feature design where only the way of constructing 𝑋 ′ is
different. The look-ahead features consist of two parts, constraint
violation features and greedy features. For simplicity, we introduce
the one-step look-ahead features. With partial route 𝑋 ′, 𝑥 ′ is the
current node, and 𝑡𝑖+1 is the current time.

The constraint violation features describe the possible delay
caused by the current route 𝑋 ′ for time constraint 𝑡𝑒 . We denote
the set of nodes that are already to be late as 𝑋 ′′late = {𝑥 ′′ ∈ 𝑉 \
𝑋 ′ |𝑡𝑖+1 + 𝐿𝑥 ′,𝑥 ′′ > 𝑡𝑒

𝑥 ′′ }. The detailed feature design is as follows.
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Table 3: Static node features for node 𝑖.

Description Feature Dimension

node coordination 𝑎𝑖 2
time windows {𝑡𝑠

𝑖
, 𝑡𝑒
𝑖
} 2

difference in coordinates between node 𝑖 and starting node 0 𝑎𝑖 − 𝑎0 2
distance to starting node 0 𝐿𝑖,0 1

Table 4: Static edge features for edge (𝑖, 𝑗).

Description Feature Dimension

distance between nodes 𝑖, 𝑗 𝐿𝑖, 𝑗 1

difference in time windows between node 𝑖, 𝑗 {𝑡𝑠
𝑗
− 𝑡𝑠

𝑖
, 𝑡𝑒
𝑗
− 𝑡𝑠

𝑖
, 4

𝑡𝑒
𝑗
− 𝑡𝑠

𝑖
, 𝑡𝑒
𝑗
− 𝑡𝑒

𝑖
}

Table 5: Dynamic features for node 𝑥 ′ at step 𝑖 of route construction.

Description Feature Dimension

node coordination 𝑎𝑥 ′ 2
difference in coordinates between node 𝑖 and next node 𝑥 ′ 𝑎𝑥 ′ − 𝑎𝑥𝑖 2
distance from current node 𝑥𝑖 to next node 𝑥 ′ 𝐿𝑥 ′,𝑥𝑖 1
time spent visiting node 𝑥 ′ max(𝐿𝑥 ′,𝑥𝑖 + 𝑡𝑖 , 𝑡𝑠𝑥 ′ ) − 𝑡𝑖 1
time difference between time windows of node 𝑥 ′ at step 𝑖 {𝑡𝑠

𝑥 ′ − 𝑡𝑖 , 𝑡
𝑒
𝑥 ′ − 𝑡𝑖 } 2

difference in time windows between node 𝑖, 𝑗 {𝑡𝑠
𝑥 ′ − 𝑡

𝑠
𝑥𝑖
, 𝑡𝑒
𝑥 ′ − 𝑡

𝑠
𝑥𝑖
, 4

𝑡𝑠
𝑥 ′ − 𝑡

𝑒
𝑥𝑖
, 𝑡𝑒
𝑥 ′ − 𝑡

𝑒
𝑥𝑖
}

• Feature 𝑓 𝑑1 denotes if the set𝑋 ′′late is an empty set. If𝑋 ′′late ≠ ∅,
route 𝑋 ′ definitely cause a timeout.

𝑓 𝑑1 =

{
1, |𝑋 ′′late | > 0
0, |𝑋 ′′late | = 0

(8)

• Feature 𝑓 𝑑2 , 𝑓
𝑑
3 represents the degree to which the current

route 𝑋 ′ violates constraints.

𝑓 𝑑2 = max
𝑥 ′′∈𝑋 ′′late

𝑡𝑖+1 + 𝐿𝑥 ′,𝑥 ′′ − 𝑡𝑒𝑥 ′′ (9)

𝑓 𝑑3 =
∑︁

𝑥 ′′∈𝑋 ′′late

𝑡𝑖+1 + 𝐿𝑥 ′,𝑥 ′′ − 𝑡𝑒𝑥 ′′ (10)

For greedy features, we select the unvisited node 𝑥 ′′𝑔 with the
lowest time overhead, 𝑥 ′′𝑔 = argmin𝑥 ′′∈𝑉 \𝑋 ′ max(𝐿𝑥 ′′,𝑥 ′ +𝑡𝑖+1, 𝑡𝑠𝑥 ′′ ).
The greedy features 𝑓 𝑑4 , 𝑓

𝑑
4 are the distance and time overhead to

node 𝑥 ′′𝑔 .

𝑓 𝑑4 = 𝐿𝑥 ′,𝑥 ′′𝑔 (11)

𝑓 𝑑5 = max(𝐿𝑥 ′,𝑥 ′′𝑔 + 𝑡𝑖+1, 𝑡
𝑠
𝑥 ′′𝑔
) − 𝑡𝑖+1 (12)

In addition, the look-ahead information for some nodes is not
gathered. For example, the visited nodes and nodes that are not
searched in MUSLA do not have meaningful information 𝐼𝑑 . We

add an indicator 𝑓 𝑑6 = {0, 1} to indicate whether the look-ahead
information of the node 𝑥 ′ exists.

D EXPERIMENT HYPERPARAMETERS

Table 6 lists the common MUSLA parameters used in the experi-
ments.
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Table 6: MUSLA Hyperparameters

Parameter Value
optimizer AdamW [16]
number of hidden units per layer 128
number of hidden layers in 𝑒𝑑 (MLP) 3
number of hidden layers in 𝑒ℎ(Transformer) 3
number of hidden layers in 𝑒𝑠 (Graph Attention Network) 5
nonlinearity ReLU
normalization Layer Normalization [3]
learning rate 0.001
selection set of 𝜖 , E {−2,−1,−0.5, 0, 0.5, 1}
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